curl_multi_socket_action



curl_multi_socket_action

NAME
SYNOPSIS
DESCRIPTION
CALLBACK DETAILS
RETURN VALUE
TYPICAL USAGE
AVAILABILITY
SEE ALSO

NAME

curl_multi_socket_action − reads/writes available data given an action

SYNOPSIS

#include <curl/curl.h>

CURLMcode curl_multi_socket_action(CURLM * multi_handle,
curl_socket_t sockfd, int ev_bitmask,
int *running_handles);

DESCRIPTION

When the application has detected action on a socket handled by libcurl, it should call curl_multi_socket_action(3) with the sockfd argument set to the socket with the action. When the events on a socket are known, they can be passed as an events bitmask ev_bitmask by first setting ev_bitmask to 0, and then adding using bitwise OR (|) any combination of events to be chosen from CURL_CSELECT_IN, CURL_CSELECT_OUT or CURL_CSELECT_ERR. When the events on a socket are unknown, pass 0 instead, and libcurl will test the descriptor internally.

At return, the integer running_handles points to will contain the number of running easy handles within the multi handle. When this number reaches zero, all transfers are complete/done. When you call curl_multi_socket_action(3) on a specific socket and the counter decreases by one, it DOES NOT necessarily mean that this exact socket/transfer is the one that completed. Use curl_multi_info_read(3) to figure out which easy handle that completed.

The curl_multi_socket_action(3) functions inform the application about updates in the socket (file descriptor) status by doing none, one, or multiple calls to the socket callback function set with the CURLMOPT_SOCKETFUNCTION option to curl_multi_setopt(3). They update the status with changes since the previous time the callback was called.

Get the timeout time by setting the CURLMOPT_TIMERFUNCTION option with curl_multi_setopt(3). Your application will then get called with information on how long to wait for socket actions at most before doing the timeout action: call the curl_multi_socket_action(3) function with the sockfd argument set to CURL_SOCKET_TIMEOUT. You can also use the curl_multi_timeout(3) function to poll the value at any given time, but for an event-based system using the callback is far better than relying on polling the timeout value.

CALLBACK DETAILS

The socket callback function uses a prototype like this

int curl_socket_callback(CURL *easy, /* easy handle */
curl_socket_t s, /* socket */
int action, /* see values below */
void *userp, /* private callback pointer */
void *socketp); /* private socket pointer */

The callback MUST return 0.

The easy argument is a pointer to the easy handle that deals with this particular socket. Note that a single handle may work with several sockets simultaneously.

The s argument is the actual socket value as you use it within your system.

The action argument to the callback has one of five values:

CURL_POLL_NONE (0)

register, not interested in readiness (yet)

CURL_POLL_IN (1)

register, interested in read readiness

CURL_POLL_OUT (2)

register, interested in write readiness

CURL_POLL_INOUT (3)

register, interested in both read and write readiness

CURL_POLL_REMOVE (4)

unregister

The socketp argument is a private pointer you have previously set with curl_multi_assign(3) to be associated with the s socket. If no pointer has been set, socketp will be NULL. This argument is of course a service to applications that want to keep certain data or structs that are strictly associated to the given socket.

The userp argument is a private pointer you have previously set with curl_multi_setopt(3) and the CURLMOPT_SOCKETDATA option.

RETURN VALUE

CURLMcode type, general libcurl multi interface error code.

Before version 7.20.0: If you receive CURLM_CALL_MULTI_PERFORM, this basically means that you should call curl_multi_socket_action(3) again before you wait for more actions on libcurl’s sockets. You don’t have to do it immediately, but the return code means that libcurl may have more data available to return or that there may be more data to send off before it is "satisfied".

The return code from this function is for the whole multi stack. Problems still might have occurred on individual transfers even when one of these functions return OK.

TYPICAL USAGE

1. Create a multi handle

2. Set the socket callback with CURLMOPT_SOCKETFUNCTION

3. Set the timeout callback with CURLMOPT_TIMERFUNCTION, to get to know what timeout value to use when waiting for socket activities.

4. Add easy handles with curl_multi_add_handle()

5. Provide some means to manage the sockets libcurl is using, so you can check them for activity. This can be done through your application code, or by way of an external library such as libevent or glib.

6. Call curl_multi_socket_action() to kickstart everything. To get one or more callbacks called.

7. Wait for activity on any of libcurl’s sockets, use the timeout value your callback has been told

8, When activity is detected, call curl_multi_socket_action() for the socket(s) that got action. If no activity is detected and the timeout expires, call curl_multi_socket_action(3) with CURL_SOCKET_TIMEOUT

AVAILABILITY

This function was added in libcurl 7.15.4, and is deemed stable since 7.16.0.

SEE ALSO

curl_multi_cleanup(3), curl_multi_init(3), curl_multi_fdset(3), curl_multi_info_read(3), the hiperfifo.c example






Opportunity


Personal Opportunity - Free software gives you access to billions of dollars of software at no cost. Use this software for your business, personal use or to develop a profitable skill. Access to source code provides access to a level of capabilities/information that companies protect though copyrights. Open source is a core component of the Internet and it is available to you. Leverage the billions of dollars in resources and capabilities to build a career, establish a business or change the world. The potential is endless for those who understand the opportunity.

Business Opportunity - Goldman Sachs, IBM and countless large corporations are leveraging open source to reduce costs, develop products and increase their bottom lines. Learn what these companies know about open source and how open source can give you the advantage.





Free Software


Free Software provides computer programs and capabilities at no cost but more importantly, it provides the freedom to run, edit, contribute to, and share the software. The importance of free software is a matter of access, not price. Software at no cost is a benefit but ownership rights to the software and source code is far more significant.


Free Office Software - The Libre Office suite provides top desktop productivity tools for free. This includes, a word processor, spreadsheet, presentation engine, drawing and flowcharting, database and math applications. Libre Office is available for Linux or Windows.





Free Books


The Free Books Library is a collection of thousands of the most popular public domain books in an online readable format. The collection includes great classical literature and more recent works where the U.S. copyright has expired. These books are yours to read and use without restrictions.


Source Code - Want to change a program or know how it works? Open Source provides the source code for its programs so that anyone can use, modify or learn how to write those programs themselves. Visit the GNU source code repositories to download the source.





Education


Study at Harvard, Stanford or MIT - Open edX provides free online courses from Harvard, MIT, Columbia, UC Berkeley and other top Universities. Hundreds of courses for almost all major subjects and course levels. Open edx also offers some paid courses and selected certifications.


Linux Manual Pages - A man or manual page is a form of software documentation found on Linux/Unix operating systems. Topics covered include computer programs (including library and system calls), formal standards and conventions, and even abstract concepts.