GLBLENDEQUATION



GLBLENDEQUATION

NAME
C SPECIFICATION
PARAMETERS
DESCRIPTION
NOTES
ERRORS
ASSOCIATED GETS
SEE ALSO

NAME

glBlendEquation − set the blend equation

C SPECIFICATION

void glBlendEquation( GLenum mode )

PARAMETERS

mode

specifies how source and destination colors are combined. It must be GL_FUNC_ADD, GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MIN, GL_MAX.

DESCRIPTION

The blend equation determines how a new pixel (the ‘‘source’’ color) is combined with a pixel already in the framebuffer (the ‘‘destination’’ color).

GL_MIN

sets the blend equation so that each component of the result color is the minimum of the corresponding components of the source and destination colors.

GL_MAX

sets the blend equation so that each component of the result color is the maximum of the corresponding components of the source and destination colors.

The remaining blend equations use the source and destination blend factors specified by glBlendFunc. See glBlendFunc for a description of the various blend factors.

In the equations that follow, source and destination color components are referred to as $(R sub s, G sub s, B sub s, A sub s )$ and $(R sub d, G sub d, B sub d, A sub d )$, respectively. The result color is referred to as $(R sub r, G sub r, B sub r, A sub r )$. The source and destination blend factors are denoted $(s sub R, s sub G, s sub B, s sub A )$ and $(d sub R, d sub G, d sub B, d sub A )$, respectively. For these equations all color components are understood to have values in the range [0, 1].
GL_FUNC_ADD

sets the blend equation so that the source and destination data are added. Each component of the source color is multiplied by the corresponding source factor, then each component of the destination color is multiplied by the corresponding destination factor. The result is the componentwise sum of the two products, clamped to the range [0, 1].

$Rr ~=~ mark min (1, ~R sub s~s sub R ~+~ R sub d~d sub R )$
$Gr ~=~ lineup min (1, ~G sub s~s sub G ~+~ G sub d~d sub G )$
$Br ~=~ lineup min (1, ~B sub s~s sub B ~+~ B sub d~d sub B )$
$Ar ~=~ lineup min (1, ~A sub s~s sub A ~+~ A sub d~d sub A )$

GL_FUNC_SUBTRACT

Is like GL_FUNC_ADD except the product of the destination factor and the destination color is componentwise subtracted from the product of the source factor and the source color. The result is clamped to the range [0, 1].

$Rr ~=~ mark max (0 , ~R sub s~s sub R ~-~ R sub d~d sub R )$
$Gr ~=~ lineup max (0 , ~G sub s~s sub G ~-~ G sub d~d sub G )$
$Br ~=~ lineup max (0 , ~B sub s~s sub B ~-~ B sub d~d sub B )$
$Ar ~=~ lineup max (0 , ~A sub s~s sub A ~-~ A sub d~d sub A )$

GL_FUNC_REVERSE_SUBTRACT

Is like GL_FUNC_ADD except the product of the source factor and the source color is componentwise subtracted from the product of the destination factor and the destination color. The result is clamped to the range [0, 1].

$Rr ~=~ mark max (0 , ~R sub d~d sub R ~-~ R sub s~s sub R )$
$Gr ~=~ lineup max (0 , ~G sub d~d sub G ~-~ G sub s~s sub G )$
$Br ~=~ lineup max (0 , ~B sub d~d sub B ~-~ B sub s~s sub B )$
$Ar ~=~ lineup max (0 , ~A sub d~d sub A ~-~ A sub s~s sub A )$

The GL_MIN and GL_MAX equations are useful for applications that analyze
image data (image thresholding against a constant color, for example). The GL_FUNC_ADD equation is useful for antialiasing and transparency, among other things.

Initially, the blend equation is set to GL_FUNC_ADD.

NOTES

glBlendEquation is part of the GL_ARB_imaging subset. glBlendEquation is present only if GL_ARB_imaging is returned when glGetString is called with GL_EXTENSIONS as its argument.

The GL_MIN, and GL_MAX equations do not use the source or destination factors, only the source and destination colors.

ERRORS

GL_INVALID_ENUM is generated if mode is not one of GL_FUNC_ADD, GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MAX, or GL_MIN.

GL_INVALID_OPERATION is generated if glBlendEquation is executed between the execution of glBegin and the corresponding execution of glEnd.

ASSOCIATED GETS

glGet with an argument of GL_BLEND_EQUATION

SEE ALSO

glGetString(3G), glBlendColor(3G), glBlendFunc(3G)






Opportunity


Personal Opportunity - Free software gives you access to billions of dollars of software at no cost. Use this software for your business, personal use or to develop a profitable skill. Access to source code provides access to a level of capabilities/information that companies protect though copyrights. Open source is a core component of the Internet and it is available to you. Leverage the billions of dollars in resources and capabilities to build a career, establish a business or change the world. The potential is endless for those who understand the opportunity.

Business Opportunity - Goldman Sachs, IBM and countless large corporations are leveraging open source to reduce costs, develop products and increase their bottom lines. Learn what these companies know about open source and how open source can give you the advantage.





Free Software


Free Software provides computer programs and capabilities at no cost but more importantly, it provides the freedom to run, edit, contribute to, and share the software. The importance of free software is a matter of access, not price. Software at no cost is a benefit but ownership rights to the software and source code is far more significant.


Free Office Software - The Libre Office suite provides top desktop productivity tools for free. This includes, a word processor, spreadsheet, presentation engine, drawing and flowcharting, database and math applications. Libre Office is available for Linux or Windows.





Free Books


The Free Books Library is a collection of thousands of the most popular public domain books in an online readable format. The collection includes great classical literature and more recent works where the U.S. copyright has expired. These books are yours to read and use without restrictions.


Source Code - Want to change a program or know how it works? Open Source provides the source code for its programs so that anyone can use, modify or learn how to write those programs themselves. Visit the GNU source code repositories to download the source.





Education


Study at Harvard, Stanford or MIT - Open edX provides free online courses from Harvard, MIT, Columbia, UC Berkeley and other top Universities. Hundreds of courses for almost all major subjects and course levels. Open edx also offers some paid courses and selected certifications.


Linux Manual Pages - A man or manual page is a form of software documentation found on Linux/Unix operating systems. Topics covered include computer programs (including library and system calls), formal standards and conventions, and even abstract concepts.