NAME
ip-xfrm - transform configuration
SYNOPSIS
ip [ OPTIONS ] xfrm { COMMAND | help } ip xfrm XFRM-OBJECT { COMMAND | help } XFRM-OBJECT := state | policy | monitor ip xfrm state { add | update } ID [ ALGO-LIST ] [ mode MODE ] [ mark MARK [ mask MASK ] ] [ reqid REQID ] [ seq SEQ ] [ replay- window SIZE ] [ replay-seq SEQ ] [ replay-oseq SEQ ] [ replay- seq-hi SEQ ] [ replay-oseq-hi SEQ ] [ flag FLAG-LIST ] [ sel SELECTOR ] [ LIMIT-LIST ] [ encap ENCAP ] [ coa ADDR[/PLEN] ] [ ctx CTX ] ip xfrm state allocspi ID [ mode MODE ] [ mark MARK [ mask MASK ] ] [ reqid REQID ] [ seq SEQ ] [ min SPI max SPI ] ip xfrm state { delete | get } ID [ mark MARK [ mask MASK ] ] ip xfrm state { deleteall | list } [ ID ] [ mode MODE ] [ reqid REQID ] [ flag FLAG-LIST ] ip xfrm state flush [ proto XFRM-PROTO ] ip xfrm state count ID := [ src ADDR ] [ dst ADDR ] [ proto XFRM-PROTO ] [ spi SPI ] XFRM-PROTO := esp | ah | comp | route2 | hao ALGO-LIST := [ ALGO-LIST ] ALGO ALGO := { enc | auth } ALGO-NAME ALGO-KEYMAT | auth-trunc ALGO-NAME ALGO-KEYMAT ALGO-TRUNC-LEN | aead ALGO-NAME ALGO-KEYMAT ALGO-ICV-LEN | comp ALGO-NAME MODE := transport | tunnel | beet | ro | in_trigger FLAG-LIST := [ FLAG-LIST ] FLAG FLAG := noecn | decap-dscp | nopmtudisc | wildrecv | icmp | af-unspec | align4 | esn SELECTOR := [ src ADDR[/PLEN] ] [ dst ADDR[/PLEN] ] [ dev DEV ] [ UPSPEC ] UPSPEC := proto { PROTO | { tcp | udp | sctp | dccp } [ sport PORT ] [ dport PORT ] | { icmp | ipv6-icmp | mobility-header } [ type NUMBER ] [ code NUMBER ] | gre [ key { DOTTED-QUAD | NUMBER } ] } LIMIT-LIST := [ LIMIT-LIST ] limit LIMIT LIMIT := { time-soft | time-hard | time-use-soft | time-use-hard } SECONDS | { byte-soft | byte-hard } SIZE | { packet-soft | packet-hard } COUNT ENCAP := { espinudp | espinudp-nonike } SPORT DPORT OADDR ip xfrm policy { add | update } SELECTOR dir DIR [ ctx CTX ] [ mark MARK [ mask MASK ] ] [ index INDEX ] [ ptype PTYPE ] [ action ACTION ] [ priority PRIORITY ] [ flag FLAG-LIST ] [ LIMIT-LIST ] [ TMPL-LIST ] ip xfrm policy { delete | get } { SELECTOR | index INDEX } dir DIR [ ctx CTX ] [ mark MARK [ mask MASK ] ] [ ptype PTYPE ] ip xfrm policy { deleteall | list } [ SELECTOR ] [ dir DIR ] [ index INDEX ] [ ptype PTYPE ] [ action ACTION ] [ priority PRIORITY ] ip xfrm policy flush [ ptype PTYPE ] ip xfrm policy count ip xfrm policy set [ hthresh4 LBITS RBITS ] [ hthresh6 LBITS RBITS ] SELECTOR := [ src ADDR[/PLEN] ] [ dst ADDR[/PLEN] ] [ dev DEV ] [ UPSPEC ] UPSPEC := proto { PROTO | { tcp | udp | sctp | dccp } [ sport PORT ] [ dport PORT ] | { icmp | ipv6-icmp | mobility-header } [ type NUMBER ] [ code NUMBER ] | gre [ key { DOTTED-QUAD | NUMBER } ] } DIR := in | out | fwd PTYPE := main | sub ACTION := allow | block FLAG-LIST := [ FLAG-LIST ] FLAG FLAG := localok | icmp LIMIT-LIST := [ LIMIT-LIST ] limit LIMIT LIMIT := { time-soft | time-hard | time-use-soft | time-use-hard } SECONDS | { byte-soft | byte-hard } SIZE | { packet-soft | packet-hard } COUNT TMPL-LIST := [ TMPL-LIST ] tmpl TMPL TMPL := ID [ mode MODE ] [ reqid REQID ] [ level LEVEL ] ID := [ src ADDR ] [ dst ADDR ] [ proto XFRM-PROTO ] [ spi SPI ] XFRM-PROTO := esp | ah | comp | route2 | hao MODE := transport | tunnel | beet | ro | in_trigger LEVEL := required | use ip xfrm monitor [ all-nsid ] [ all | LISTofXFRM-OBJECTS ] LISTofXFRM-OBJECTS := [ LISTofXFRM-OBJECTS ] XFRM-OBJECT XFRM-OBJECT := acquire | expire | SA | policy | aevent | report
DESCRIPTION
xfrm is an IP framework for transforming packets (such as encrypting their payloads). This framework is used to implement the IPsec protocol suite (with the state object operating on the Security Association Database, and the policy object operating on the Security Policy Database). It is also used for the IP Payload Compression Protocol and features of Mobile IPv6. ip xfrm state add add new state into xfrm ip xfrm state update update existing state in xfrm ip xfrm state allocspi allocate an SPI value ip xfrm state delete delete existing state in xfrm ip xfrm state get get existing state in xfrm ip xfrm state deleteall delete all existing state in xfrm ip xfrm state list print out the list of existing state in xfrm ip xfrm state flush flush all state in xfrm ip xfrm state count count all existing state in xfrm ID is specified by a source address, destination address, transform protocol XFRM-PROTO, and/or Security Parameter Index SPI. (For IP Payload Compression, the Compression Parameter Index or CPI is used for SPI.) XFRM-PROTO specifies a transform protocol: IPsec Encapsulating Security Payload (esp), IPsec Authentication Header (ah), IP Payload Compression (comp), Mobile IPv6 Type 2 Routing Header (route2), or Mobile IPv6 Home Address Option (hao). ALGO-LIST contains one or more algorithms to use. Each algorithm ALGO is specified by: * the algorithm type: encryption (enc), authentication (auth or auth-trunc), authenticated encryption with associated data (aead), or compression (comp) * the algorithm name ALGO-NAME (see below) * (for all except comp) the keying material ALGO-KEYMAT, which may include both a key and a salt or nonce value; refer to the corresponding RFC * (for auth-trunc only) the truncation length ALGO-TRUNC- LEN in bits * (for aead only) the Integrity Check Value length ALGO- ICV-LEN in bits Encryption algorithms include ecb(cipher_null), cbc(des), cbc(des3_ede), cbc(cast5), cbc(blowfish), cbc(aes), cbc(serpent), cbc(camellia), cbc(twofish), and rfc3686(ctr(aes)). Authentication algorithms include digest_null, hmac(md5), hmac(sha1), hmac(sha256), hmac(sha384), hmac(sha512), hmac(rmd610), and xcbc(aes). Authenticated encryption with associated data (AEAD) algorithms include rfc4106(gcm(aes)), rfc4309(ccm(aes)), and rfc4543(gcm(aes)). Compression algorithms include deflate, lzs, and lzjh. MODE specifies a mode of operation for the transform protocol. IPsec and IP Payload Compression modes are transport, tunnel, and (for IPsec ESP only) Bound End-to-End Tunnel (beet). Mobile IPv6 modes are route optimization (ro) and inbound trigger (in_trigger). FLAG-LIST contains one or more of the following optional flags: noecn, decap-dscp, nopmtudisc, wildrecv, icmp, af-unspec, align4, or esn. SELECTOR selects the traffic that will be controlled by the policy, based on the source address, the destination address, the network device, and/or UPSPEC. UPSPEC selects traffic by protocol. For the tcp, udp, sctp, or dccp protocols, the source and destination port can optionally be specified. For the icmp, ipv6-icmp, or mobility-header protocols, the type and code numbers can optionally be specified. For the gre protocol, the key can optionally be specified as a dotted-quad or number. Other protocols can be selected by name or number PROTO. LIMIT-LIST sets limits in seconds, bytes, or numbers of packets. ENCAP encapsulates packets with protocol espinudp or espinudp-nonike, using source port SPORT, destination port DPORT , and original address OADDR. ip xfrm policy add add a new policy ip xfrm policy update update an existing policy ip xfrm policy delete delete an existing policy ip xfrm policy get get an existing policy ip xfrm policy deleteall delete all existing xfrm policies ip xfrm policy list print out the list of xfrm policies ip xfrm policy flush flush policies SELECTOR selects the traffic that will be controlled by the policy, based on the source address, the destination address, the network device, and/or UPSPEC. UPSPEC selects traffic by protocol. For the tcp, udp, sctp, or dccp protocols, the source and destination port can optionally be specified. For the icmp, ipv6-icmp, or mobility-header protocols, the type and code numbers can optionally be specified. For the gre protocol, the key can optionally be specified as a dotted-quad or number. Other protocols can be selected by name or number PROTO. DIR selects the policy direction as in, out, or fwd. CTX sets the security context. PTYPE can be main (default) or sub. ACTION can be allow (default) or block. PRIORITY is a number that defaults to zero. FLAG-LIST contains one or both of the following optional flags: local or icmp. LIMIT-LIST sets limits in seconds, bytes, or numbers of packets. TMPL-LIST is a template list specified using ID, MODE, REQID, and/or LEVEL. ID is specified by a source address, destination address, transform protocol XFRM-PROTO, and/or Security Parameter Index SPI. (For IP Payload Compression, the Compression Parameter Index or CPI is used for SPI.) XFRM-PROTO specifies a transform protocol: IPsec Encapsulating Security Payload (esp), IPsec Authentication Header (ah), IP Payload Compression (comp), Mobile IPv6 Type 2 Routing Header (route2), or Mobile IPv6 Home Address Option (hao). MODE specifies a mode of operation for the transform protocol. IPsec and IP Payload Compression modes are transport, tunnel, and (for IPsec ESP only) Bound End-to-End Tunnel (beet). Mobile IPv6 modes are route optimization (ro) and inbound trigger (in_trigger). LEVEL can be required (default) or use. ip xfrm policy count count existing policies Use one or more -s options to display more details, including policy hash table information. ip xfrm policy set configure the policy hash table Security policies whose address prefix lengths are greater than or equal policy hash table thresholds are hashed. Others are stored in the policy_inexact chained list. LBITS specifies the minimum local address prefix length of policies that are stored in the Security Policy Database hash table. RBITS specifies the minimum remote address prefix length of policies that are stored in the Security Policy Database hash table. ip xfrm monitor state monitoring for xfrm objects The xfrm objects to monitor can be optionally specified. If the all-nsid option is set, the program listens to all network namespaces that have a nsid assigned into the network namespace were the program is running. A prefix is displayed to show the network namespace where the message originates. Example: [nsid 1]Flushed state proto 0
AUTHOR
Manpage revised by David Ward <david.ward@ll.mit.edu> Manpage revised by Christophe Gouault <christophe.gouault@6wind.com> Manpage revised by Nicolas Dichtel <nicolas.dichtel@6wind.com>
More Linux Commands
manpages/ether_aton.3.html
ether_aton(3) - Ethernet address manipulation routines......
ether_aton() converts the 48-bit Ethernet host address asc from the standard hex-digits-and-colons notation into binary data in network byte order and returns a
manpages/syslog.3.html
syslog(3) - send messages to the system logger (Man Page)...
closelog() closes the descriptor being used to write to the system logger. The use of closelog() is optional. openlog() opens a connection to the system logger
manpages/gnutls_openpgp_crt_import.3.html
gnutls_openpgp_crt_import(3) - API function - Linux man page
This function will convert the given RAW or Base64 encoded key to the native gnutls_openpgp_crt_t format. The output will be stored in key. RETURNS GNUTLS_E_SUC
manpages/snmp_free_var.3.html
snmp_free_var(3) - netsnmp_varbind_api functions (Man Page)
The functions dealing with variable bindings fall into four groups dealing with the creation, setting of values, output and deletion of varbinds. Creation snmp_
manpages/Tcl_SetObjResult.3.html
Tcl_SetObjResult(3) - manipulate Tcl result - Linux man page
The procedures described here are utilities for manipulating the result value in a Tcl interpreter. The interpreter result may be either a Tcl object or a strin
manpages/Config::Extensions.3pm.html
Config::Extensions(3pm) - hash lookup of which core extensio
The Config::Extensions module provides a hash %Extensions containing all the core extensions that were enabled for this perl. The hash is keyed by extension nam
manpages/XIChangeHierarchy.3.html
XIChangeHierarchy(3) - change the device hierarchy (ManPage)
XIChangeHierarchy modifies the device hierarchy by creating or removing master devices or changing the attachment of slave devices. If num_changes is non-zero,
manpages/XkbKeyNumSyms.3.html
XkbKeyNumSyms(3) - Returns the total number of keysyms for t
XkbKeyNumSyms.3 - The key width and number of groups associated with a key are used to form a small two-dimensional array of KeySyms for a key. This array may b
manpages/Tcl_RegExpExec.3.html
Tcl_RegExpExec(3) - Pattern matching with regular expression
Tcl_RegExpMatch determines whether its pattern argument matches regexp, where regexp is interpreted as a regular expression using the rules in the re_syntax ref
manpages/chromium.1.html
chromium(1) - the web browser from Google - Linux man page
See the Google Chrome help center for help on using the browser. <http://www.no_google.com/support/chrome/> This manpage only describes invocation, environment,
manpages/XtReleasePropertyAtom.3.html
XtReleasePropertyAtom(3) - maintain a cache of property atom
XtReservePropertyAtom returns an atom that may be used for properties in conjunction with conversion requests from widget w. The atom returned will be unique fo
manpages/git-merge.1.html
git-merge(1) - Join two or more development histories togeth
Incorporates changes from the named commits (since the time their histories diverged from the current branch) into the current branch. This command is used by g
