perlebcdic(1)


NAME

   perlebcdic - Considerations for running Perl on EBCDIC platforms

DESCRIPTION

   An exploration of some of the issues facing Perl programmers on EBCDIC
   based computers.

   Portions of this document that are still incomplete are marked with
   XXX.

   Early Perl versions worked on some EBCDIC machines, but the last known
   version that ran on EBCDIC was v5.8.7, until v5.22, when the Perl core
   again works on z/OS.  Theoretically, it could work on OS/400 or
   Siemens' BS2000  (or their successors), but this is untested.  In v5.22
   and 5.24, not all the modules found on CPAN but shipped with core Perl
   work on z/OS.

   If you want to use Perl on a non-z/OS EBCDIC machine, please let us
   know by sending mail to perlbug@perl.org

   Writing Perl on an EBCDIC platform is really no different than writing
   on an "ASCII" one, but with different underlying numbers, as we'll see
   shortly.  You'll have to know something about those "ASCII" platforms
   because the documentation is biased and will frequently use example
   numbers that don't apply to EBCDIC.  There are also very few CPAN
   modules that are written for EBCDIC and which don't work on ASCII;
   instead the vast majority of CPAN modules are written for ASCII, and
   some may happen to work on EBCDIC, while a few have been designed to
   portably work on both.

   If your code just uses the 52 letters A-Z and a-z, plus SPACE, the
   digits 0-9, and the punctuation characters that Perl uses, plus a few
   controls that are denoted by escape sequences like "\n" and "\t", then
   there's nothing special about using Perl, and your code may very well
   work on an ASCII machine without change.

   But if you write code that uses "\005" to mean a TAB or "\xC1" to mean
   an "A", or "\xDF" to mean a "" (small "y" with a diaeresis), then your
   code may well work on your EBCDIC platform, but not on an ASCII one.
   That's fine to do if no one will ever want to run your code on an ASCII
   platform; but the bias in this document will be towards writing code
   portable between EBCDIC and ASCII systems.  Again, if every character
   you care about is easily enterable from your keyboard, you don't have
   to know anything about ASCII, but many keyboards don't easily allow you
   to directly enter, say, the character "\xDF", so you have to specify it
   indirectly, such as by using the "\xDF" escape sequence.  In those
   cases it's easiest to know something about the ASCII/Unicode character
   sets.  If you know that the small "" is "U+00FF", then you can instead
   specify it as "\N{U+FF}", and have the computer automatically translate
   it to "\xDF" on your platform, and leave it as "\xFF" on ASCII ones.
   Or you could specify it by name, "\N{LATIN SMALL LETTER Y WITH
   DIAERESIS" and not have to know the  numbers.  Either way works, but
   both require familiarity with Unicode.

COMMON CHARACTER CODE SETS

   ASCII
   The American Standard Code for Information Interchange (ASCII or US-
   ASCII) is a set of integers running from 0 to 127 (decimal) that have
   standardized interpretations by the computers which use ASCII.  For
   example, 65 means the letter "A".  The range 0..127 can be covered by
   setting various bits in a 7-bit binary digit, hence the set is
   sometimes referred to as "7-bit ASCII".  ASCII was described by the
   American National Standards Institute document ANSI X3.4-1986.  It was
   also described by ISO 646:1991 (with localization for currency
   symbols).  The full ASCII set is given in the table below as the first
   128 elements.  Languages that can be written adequately with the
   characters in ASCII include English, Hawaiian, Indonesian, Swahili and
   some Native American languages.

   Most non-EBCDIC character sets are supersets of ASCII.  That is the
   integers 0-127 mean what ASCII says they mean.  But integers 128 and
   above are specific to the character set.

   Many of these fit entirely into 8 bits, using ASCII as 0-127, while
   specifying what 128-255 mean, and not using anything above 255.  Thus,
   these are single-byte (or octet if you prefer) character sets.  One
   important one (since Unicode is a superset of it) is the ISO 8859-1
   character set.

   ISO 8859
   The ISO 8859-$n are a collection of character code sets from the
   International Organization for Standardization (ISO), each of which
   adds characters to the ASCII set that are typically found in various
   languages, many of which are based on the Roman, or Latin, alphabet.
   Most are for European languages, but there are also ones for Arabic,
   Greek, Hebrew, and Thai.  There are good references on the web about
   all these.

   Latin 1 (ISO 8859-1)
   A particular 8-bit extension to ASCII that includes grave and acute
   accented Latin characters.  Languages that can employ ISO 8859-1
   include all the languages covered by ASCII as well as Afrikaans,
   Albanian, Basque, Catalan, Danish, Faroese, Finnish, Norwegian,
   Portuguese, Spanish, and Swedish.  Dutch is covered albeit without the
   ij ligature.  French is covered too but without the oe ligature.
   German can use ISO 8859-1 but must do so without German-style quotation
   marks.  This set is based on Western European extensions to ASCII and
   is commonly encountered in world wide web work.  In IBM character code
   set identification terminology, ISO 8859-1 is also known as CCSID 819
   (or sometimes 0819 or even 00819).

   EBCDIC
   The Extended Binary Coded Decimal Interchange Code refers to a large
   collection of single- and multi-byte coded character sets that are
   quite different from ASCII and ISO 8859-1, and are all slightly
   different from each other; they typically run on host computers.  The
   EBCDIC encodings derive from 8-bit byte extensions of Hollerith punched
   card encodings, which long predate ASCII.  The layout on the cards was
   such that high bits were set for the upper and lower case alphabetic
   characters "[a-z]" and "[A-Z]", but there were gaps within each Latin
   alphabet range, visible in the table below.  These gaps can cause
   complications.

   Some IBM EBCDIC character sets may be known by character code set
   identification numbers (CCSID numbers) or code page numbers.

   Perl can be compiled on platforms that run any of three commonly used
   EBCDIC character sets, listed below.

   The 13 variant characters

   Among IBM EBCDIC character code sets there are 13 characters that are
   often mapped to different integer values.  Those characters are known
   as the 13 "variant" characters and are:

       \ [ ] { } ^ ~ ! # | $ @ `

   When Perl is compiled for a platform, it looks at all of these
   characters to guess which EBCDIC character set the platform uses, and
   adapts itself accordingly to that platform.  If the platform uses a
   character set that is not one of the three Perl knows about, Perl will
   either fail to compile, or mistakenly and silently choose one of the
   three.

   EBCDIC code sets recognized by Perl

   0037
       Character code set ID 0037 is a mapping of the ASCII plus Latin-1
       characters (i.e. ISO 8859-1) to an EBCDIC set.  0037 is used in
       North American English locales on the OS/400 operating system that
       runs on AS/400 computers.  CCSID 0037 differs from ISO 8859-1 in
       236 places; in other words they agree on only 20 code point values.

   1047
       Character code set ID 1047 is also a mapping of the ASCII plus
       Latin-1 characters (i.e. ISO 8859-1) to an EBCDIC set.  1047 is
       used under Unix System Services for OS/390 or z/OS, and OpenEdition
       for VM/ESA.  CCSID 1047 differs from CCSID 0037 in eight places,
       and from ISO 8859-1 in 236.

   POSIX-BC
       The EBCDIC code page in use on Siemens' BS2000 system is distinct
       from 1047 and 0037.  It is identified below as the POSIX-BC set.
       Like 0037 and 1047, it is the same as ISO 8859-1 in 20 code point
       values.

   Unicode code points versus EBCDIC code points
   In Unicode terminology a code point is the number assigned to a
   character: for example, in EBCDIC the character "A" is usually assigned
   the number 193.  In Unicode, the character "A" is assigned the number
   65.  All the code points in ASCII and Latin-1 (ISO 8859-1) have the
   same meaning in Unicode.  All three of the recognized EBCDIC code sets
   have 256 code points, and in each code set, all 256 code points are
   mapped to equivalent Latin1 code points.  Obviously, "A" will map to
   "A", "B" => "B", "%" => "%", etc., for all printable characters in
   Latin1 and these code pages.

   It also turns out that EBCDIC has nearly precise equivalents for the
   ASCII/Latin1 C0 controls and the DELETE control.  (The C0 controls are
   those whose ASCII code points are 0..0x1F; things like TAB, ACK, BEL,
   etc.)  A mapping is set up between these ASCII/EBCDIC controls.  There
   isn't such a precise mapping between the C1 controls on ASCII platforms
   and the remaining EBCDIC controls.  What has been done is to map these
   controls, mostly arbitrarily, to some otherwise unmatched character in
   the other character set.  Most of these are very very rarely used
   nowadays in EBCDIC anyway, and their names have been dropped, without
   much complaint.  For example the EO (Eight Ones) EBCDIC control
   (consisting of eight one bits = 0xFF) is mapped to the C1 APC control
   (0x9F), and you can't use the name "EO".

   The EBCDIC controls provide three possible line terminator characters,
   CR (0x0D), LF (0x25), and NL (0x15).  On ASCII platforms, the symbols
   "NL" and "LF" refer to the same character, but in strict EBCDIC
   terminology they are different ones.  The EBCDIC NL is mapped to the C1
   control called "NEL" ("Next Line"; here's a case where the mapping
   makes quite a bit of sense, and hence isn't just arbitrary).  On some
   EBCDIC platforms, this NL or NEL is the typical line terminator.  This
   is true of z/OS and BS2000.  In these platforms, the C compilers will
   swap the LF and NEL code points, so that "\n" is 0x15, and refers to
   NL.  Perl does that too; you can see it in the code chart below.  This
   makes things generally "just work" without you even having to be aware
   that there is a swap.

   Unicode and UTF
   UTF stands for "Unicode Transformation Format".  UTF-8 is an encoding
   of Unicode into a sequence of 8-bit byte chunks, based on ASCII and
   Latin-1.  The length of a sequence required to represent a Unicode code
   point depends on the ordinal number of that code point, with larger
   numbers requiring more bytes.  UTF-EBCDIC is like UTF-8, but based on
   EBCDIC.  They are enough alike that often, casual usage will conflate
   the two terms, and use "UTF-8" to mean both the UTF-8 found on ASCII
   platforms, and the UTF-EBCDIC found on EBCDIC ones.

   You may see the term "invariant" character or code point.  This simply
   means that the character has the same numeric value and representation
   when encoded in UTF-8 (or UTF-EBCDIC) as when not.  (Note that this is
   a very different concept from "The 13 variant characters" mentioned
   above.  Careful prose will use the term "UTF-8 invariant" instead of
   just "invariant", but most often you'll see just "invariant".) For
   example, the ordinal value of "A" is 193 in most EBCDIC code pages, and
   also is 193 when encoded in UTF-EBCDIC.  All UTF-8 (or UTF-EBCDIC)
   variant code points occupy at least two bytes when encoded in UTF-8 (or
   UTF-EBCDIC); by definition, the UTF-8 (or UTF-EBCDIC) invariant code
   points are exactly one byte whether encoded in UTF-8 (or UTF-EBCDIC),
   or not.  (By now you see why people typically just say "UTF-8" when
   they also mean "UTF-EBCDIC".  For the rest of this document, we'll
   mostly be casual about it too.)  In ASCII UTF-8, the code points
   corresponding to the lowest 128 ordinal numbers (0 - 127: the ASCII
   characters) are invariant.  In UTF-EBCDIC, there are 160 invariant
   characters.  (If you care, the EBCDIC invariants are those characters
   which have ASCII equivalents, plus those that correspond to the C1
   controls (128 - 159 on ASCII platforms).)

   A string encoded in UTF-EBCDIC may be longer (very rarely shorter) than
   one encoded in UTF-8.  Perl extends both UTF-8 and UTF-EBCDIC so that
   they can encode code points above the Unicode maximum of U+10FFFF.
   Both extensions are constructed to allow encoding of any code point
   that fits in a 64-bit word.

   UTF-EBCDIC is defined by Unicode Technical Report #16
   <http://www.unicode.org/reports/tr16> (often referred to as just TR16).
   It is defined based on CCSID 1047, not allowing for the differences for
   other code pages.  This allows for easy interchange of text between
   computers running different code pages, but makes it unusable, without
   adaptation, for Perl on those other code pages.

   The reason for this unusability is that a fundamental assumption of
   Perl is that the characters it cares about for parsing and lexical
   analysis are the same whether or not the text is in UTF-8.  For
   example, Perl expects the character "[" to have the same
   representation, no matter if the string containing it (or program text)
   is UTF-8 encoded or not.  To ensure this, Perl adapts UTF-EBCDIC to the
   particular code page so that all characters it expects to be UTF-8
   invariant are in fact UTF-8 invariant.  This means that text generated
   on a computer running one version of Perl's UTF-EBCDIC has to be
   translated to be intelligible to a computer running another.

   TR16 implies a method to extend UTF-EBCDIC to encode points up through
   "2**31-1".  Perl uses this method for code points up through
   "2**30-1", but uses an incompatible method for larger ones, to
   enable it to handle much larger code points than otherwise.

   Using Encode
   Starting from Perl 5.8 you can use the standard module Encode to
   translate from EBCDIC to Latin-1 code points.  Encode knows about more
   EBCDIC character sets than Perl can currently be compiled to run on.

      use Encode 'from_to';

      my %ebcdic = ( 176 => 'cp37', 95 => 'cp1047', 106 => 'posix-bc' );

      # $a is in EBCDIC code points
      from_to($a, $ebcdic{ord '^'}, 'latin1');
      # $a is ISO 8859-1 code points

   and from Latin-1 code points to EBCDIC code points

      use Encode 'from_to';

      my %ebcdic = ( 176 => 'cp37', 95 => 'cp1047', 106 => 'posix-bc' );

      # $a is ISO 8859-1 code points
      from_to($a, 'latin1', $ebcdic{ord '^'});
      # $a is in EBCDIC code points

   For doing I/O it is suggested that you use the autotranslating features
   of PerlIO, see perluniintro.

   Since version 5.8 Perl uses the PerlIO I/O library.  This enables you
   to use different encodings per IO channel.  For example you may use

       use Encode;
       open($f, ">:encoding(ascii)", "test.ascii");
       print $f "Hello World!\n";
       open($f, ">:encoding(cp37)", "test.ebcdic");
       print $f "Hello World!\n";
       open($f, ">:encoding(latin1)", "test.latin1");
       print $f "Hello World!\n";
       open($f, ">:encoding(utf8)", "test.utf8");
       print $f "Hello World!\n";

   to get four files containing "Hello World!\n" in ASCII, CP 0037 EBCDIC,
   ISO 8859-1 (Latin-1) (in this example identical to ASCII since only
   ASCII characters were printed), and UTF-EBCDIC (in this example
   identical to normal EBCDIC since only characters that don't differ
   between EBCDIC and UTF-EBCDIC were printed).  See the documentation of
   Encode::PerlIO for details.

   As the PerlIO layer uses raw IO (bytes) internally, all this totally
   ignores things like the type of your filesystem (ASCII or EBCDIC).

SINGLE OCTET TABLES

   The following tables list the ASCII and Latin 1 ordered sets including
   the subsets: C0 controls (0..31), ASCII graphics (32..7e), delete (7f),
   C1 controls (80..9f), and Latin-1 (a.k.a. ISO 8859-1) (a0..ff).  In the
   table names of the Latin 1 extensions to ASCII have been labelled with
   character names roughly corresponding to The Unicode Standard, Version
   6.1 albeit with substitutions such as "s/LATIN//" and "s/VULGAR//" in
   all cases; "s/CAPITALLETTER//" in some cases; and
   "s/SMALLLETTER([A-Z])/\l$1/" in some other cases.  Controls are
   listed using their Unicode 6.2 abbreviations.  The differences between
   the 0037 and 1047 sets are flagged with "**".  The differences between
   the 1047 and POSIX-BC sets are flagged with "##."  All "ord()" numbers
   listed are decimal.  If you would rather see this table listing octal
   values, then run the table (that is, the pod source text of this
   document, since this recipe may not work with a pod2_other_format
   translation) through:

   recipe 0

       perl -ne 'if(/(.{29})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/)' \
        -e '{printf("%s%-5.03o%-5.03o%-5.03o%.03o\n",$1,$2,$3,$4,$5)}' \
        perlebcdic.pod

   If you want to retain the UTF-x code points then in script form you
   might want to write:

   recipe 1

    open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
    while (<FH>) {
        if (/(.{29})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\.?(\d*)
                                                        \s+(\d+)\.?(\d*)/x)
        {
            if ($7 ne '' && $9 ne '') {
                printf(
                   "%s%-5.03o%-5.03o%-5.03o%-5.03o%-3o.%-5o%-3o.%.03o\n",
                                               $1,$2,$3,$4,$5,$6,$7,$8,$9);
            }
            elsif ($7 ne '') {
                printf("%s%-5.03o%-5.03o%-5.03o%-5.03o%-3o.%-5o%.03o\n",
                                              $1,$2,$3,$4,$5,$6,$7,$8);
            }
            else {
                printf("%s%-5.03o%-5.03o%-5.03o%-5.03o%-5.03o%.03o\n",
                                                   $1,$2,$3,$4,$5,$6,$8);
            }
        }
    }

   If you would rather see this table listing hexadecimal values then run
   the table through:

   recipe 2

       perl -ne 'if(/(.{29})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/)' \
        -e '{printf("%s%-5.02X%-5.02X%-5.02X%.02X\n",$1,$2,$3,$4,$5)}' \
        perlebcdic.pod

   Or, in order to retain the UTF-x code points in hexadecimal:

   recipe 3

    open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
    while (<FH>) {
        if (/(.{29})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\.?(\d*)
                                                        \s+(\d+)\.?(\d*)/x)
        {
            if ($7 ne '' && $9 ne '') {
                printf(
                   "%s%-5.02X%-5.02X%-5.02X%-5.02X%-2X.%-6.02X%02X.%02X\n",
                                              $1,$2,$3,$4,$5,$6,$7,$8,$9);
            }
            elsif ($7 ne '') {
                printf("%s%-5.02X%-5.02X%-5.02X%-5.02X%-2X.%-6.02X%02X\n",
                                                 $1,$2,$3,$4,$5,$6,$7,$8);
            }
            else {
                printf("%s%-5.02X%-5.02X%-5.02X%-5.02X%-5.02X%02X\n",
                                                     $1,$2,$3,$4,$5,$6,$8);
            }
        }
    }

                             ISO
                            8859-1             POS-         CCSID
                            CCSID  CCSID CCSID IX-          1047
     chr                     0819   0037 1047  BC  UTF-8  UTF-EBCDIC
    ---------------------------------------------------------------------
    <NUL>                       0    0    0    0    0        0
    <SOH>                       1    1    1    1    1        1
    <STX>                       2    2    2    2    2        2
    <ETX>                       3    3    3    3    3        3
    <EOT>                       4    55   55   55   4        55
    <ENQ>                       5    45   45   45   5        45
    <ACK>                       6    46   46   46   6        46
    <BEL>                       7    47   47   47   7        47
    <BS>                        8    22   22   22   8        22
    <HT>                        9    5    5    5    9        5
    <LF>                        10   37   21   21   10       21  **
    <VT>                        11   11   11   11   11       11
    <FF>                        12   12   12   12   12       12
    <CR>                        13   13   13   13   13       13
    <SO>                        14   14   14   14   14       14
    <SI>                        15   15   15   15   15       15
    <DLE>                       16   16   16   16   16       16
    <DC1>                       17   17   17   17   17       17
    <DC2>                       18   18   18   18   18       18
    <DC3>                       19   19   19   19   19       19
    <DC4>                       20   60   60   60   20       60
    <NAK>                       21   61   61   61   21       61
    <SYN>                       22   50   50   50   22       50
    <ETB>                       23   38   38   38   23       38
    <CAN>                       24   24   24   24   24       24
    <EOM>                       25   25   25   25   25       25
    <SUB>                       26   63   63   63   26       63
    <ESC>                       27   39   39   39   27       39
    <FS>                        28   28   28   28   28       28
    <GS>                        29   29   29   29   29       29
    <RS>                        30   30   30   30   30       30
    <US>                        31   31   31   31   31       31
    <SPACE>                     32   64   64   64   32       64
    !                           33   90   90   90   33       90
    "                           34   127  127  127  34       127
    #                           35   123  123  123  35       123
    $                           36   91   91   91   36       91
    %                           37   108  108  108  37       108
    &                           38   80   80   80   38       80
    '                           39   125  125  125  39       125
    (                           40   77   77   77   40       77
    )                           41   93   93   93   41       93
    *                           42   92   92   92   42       92
    +                           43   78   78   78   43       78
    ,                           44   107  107  107  44       107
    -                           45   96   96   96   45       96
    .                           46   75   75   75   46       75
    /                           47   97   97   97   47       97
    0                           48   240  240  240  48       240
    1                           49   241  241  241  49       241
    2                           50   242  242  242  50       242
    3                           51   243  243  243  51       243
    4                           52   244  244  244  52       244
    5                           53   245  245  245  53       245
    6                           54   246  246  246  54       246
    7                           55   247  247  247  55       247
    8                           56   248  248  248  56       248
    9                           57   249  249  249  57       249
    :                           58   122  122  122  58       122
    ;                           59   94   94   94   59       94
    <                           60   76   76   76   60       76
    =                           61   126  126  126  61       126
    >                           62   110  110  110  62       110
    ?                           63   111  111  111  63       111
    @                           64   124  124  124  64       124
    A                           65   193  193  193  65       193
    B                           66   194  194  194  66       194
    C                           67   195  195  195  67       195
    D                           68   196  196  196  68       196
    E                           69   197  197  197  69       197
    F                           70   198  198  198  70       198
    G                           71   199  199  199  71       199
    H                           72   200  200  200  72       200
    I                           73   201  201  201  73       201
    J                           74   209  209  209  74       209
    K                           75   210  210  210  75       210
    L                           76   211  211  211  76       211
    M                           77   212  212  212  77       212
    N                           78   213  213  213  78       213
    O                           79   214  214  214  79       214
    P                           80   215  215  215  80       215
    Q                           81   216  216  216  81       216
    R                           82   217  217  217  82       217
    S                           83   226  226  226  83       226
    T                           84   227  227  227  84       227
    U                           85   228  228  228  85       228
    V                           86   229  229  229  86       229
    W                           87   230  230  230  87       230
    X                           88   231  231  231  88       231
    Y                           89   232  232  232  89       232
    Z                           90   233  233  233  90       233
    [                           91   186  173  187  91       173  ** ##
    \                           92   224  224  188  92       224  ##
    ]                           93   187  189  189  93       189  **
    ^                           94   176  95   106  94       95   ** ##
    _                           95   109  109  109  95       109
    `                           96   121  121  74   96       121  ##
    a                           97   129  129  129  97       129
    b                           98   130  130  130  98       130
    c                           99   131  131  131  99       131
    d                           100  132  132  132  100      132
    e                           101  133  133  133  101      133
    f                           102  134  134  134  102      134
    g                           103  135  135  135  103      135
    h                           104  136  136  136  104      136
    i                           105  137  137  137  105      137
    j                           106  145  145  145  106      145
    k                           107  146  146  146  107      146
    l                           108  147  147  147  108      147
    m                           109  148  148  148  109      148
    n                           110  149  149  149  110      149
    o                           111  150  150  150  111      150
    p                           112  151  151  151  112      151
    q                           113  152  152  152  113      152
    r                           114  153  153  153  114      153
    s                           115  162  162  162  115      162
    t                           116  163  163  163  116      163
    u                           117  164  164  164  117      164
    v                           118  165  165  165  118      165
    w                           119  166  166  166  119      166
    x                           120  167  167  167  120      167
    y                           121  168  168  168  121      168
    z                           122  169  169  169  122      169
    {                           123  192  192  251  123      192  ##
    |                           124  79   79   79   124      79
    }                           125  208  208  253  125      208  ##
    ~                           126  161  161  255  126      161  ##
    <DEL>                       127  7    7    7    127      7
    <PAD>                       128  32   32   32   194.128  32
    <HOP>                       129  33   33   33   194.129  33
    <BPH>                       130  34   34   34   194.130  34
    <NBH>                       131  35   35   35   194.131  35
    <IND>                       132  36   36   36   194.132  36
    <NEL>                       133  21   37   37   194.133  37   **
    <SSA>                       134  6    6    6    194.134  6
    <ESA>                       135  23   23   23   194.135  23
    <HTS>                       136  40   40   40   194.136  40
    <HTJ>                       137  41   41   41   194.137  41
    <VTS>                       138  42   42   42   194.138  42
    <PLD>                       139  43   43   43   194.139  43
    <PLU>                       140  44   44   44   194.140  44
    <RI>                        141  9    9    9    194.141  9
    <SS2>                       142  10   10   10   194.142  10
    <SS3>                       143  27   27   27   194.143  27
    <DCS>                       144  48   48   48   194.144  48
    <PU1>                       145  49   49   49   194.145  49
    <PU2>                       146  26   26   26   194.146  26
    <STS>                       147  51   51   51   194.147  51
    <CCH>                       148  52   52   52   194.148  52
    <MW>                        149  53   53   53   194.149  53
    <SPA>                       150  54   54   54   194.150  54
    <EPA>                       151  8    8    8    194.151  8
    <SOS>                       152  56   56   56   194.152  56
    <SGC>                       153  57   57   57   194.153  57
    <SCI>                       154  58   58   58   194.154  58
    <CSI>                       155  59   59   59   194.155  59
    <ST>                        156  4    4    4    194.156  4
    <OSC>                       157  20   20   20   194.157  20
    <PM>                        158  62   62   62   194.158  62
    <APC>                       159  255  255  95   194.159  255      ##
    <NON-BREAKING SPACE>        160  65   65   65   194.160  128.65
    <INVERTED "!" >             161  170  170  170  194.161  128.66
    <CENT SIGN>                 162  74   74   176  194.162  128.67   ##
    <POUND SIGN>                163  177  177  177  194.163  128.68
    <CURRENCY SIGN>             164  159  159  159  194.164  128.69
    <YEN SIGN>                  165  178  178  178  194.165  128.70
    <BROKEN BAR>                166  106  106  208  194.166  128.71   ##
    <SECTION SIGN>              167  181  181  181  194.167  128.72
    <DIAERESIS>                 168  189  187  121  194.168  128.73   ** ##
    <COPYRIGHT SIGN>            169  180  180  180  194.169  128.74
    <FEMININE ORDINAL>          170  154  154  154  194.170  128.81
    <LEFT POINTING GUILLEMET>   171  138  138  138  194.171  128.82
    <NOT SIGN>                  172  95   176  186  194.172  128.83   ** ##
    <SOFT HYPHEN>               173  202  202  202  194.173  128.84
    <REGISTERED TRADE MARK>     174  175  175  175  194.174  128.85
    <MACRON>                    175  188  188  161  194.175  128.86   ##
    <DEGREE SIGN>               176  144  144  144  194.176  128.87
    <PLUS-OR-MINUS SIGN>        177  143  143  143  194.177  128.88
    <SUPERSCRIPT TWO>           178  234  234  234  194.178  128.89
    <SUPERSCRIPT THREE>         179  250  250  250  194.179  128.98
    <ACUTE ACCENT>              180  190  190  190  194.180  128.99
    <MICRO SIGN>                181  160  160  160  194.181  128.100
    <PARAGRAPH SIGN>            182  182  182  182  194.182  128.101
    <MIDDLE DOT>                183  179  179  179  194.183  128.102
    <CEDILLA>                   184  157  157  157  194.184  128.103
    <SUPERSCRIPT ONE>           185  218  218  218  194.185  128.104
    <MASC. ORDINAL INDICATOR>   186  155  155  155  194.186  128.105
    <RIGHT POINTING GUILLEMET>  187  139  139  139  194.187  128.106
    <FRACTION ONE QUARTER>      188  183  183  183  194.188  128.112
    <FRACTION ONE HALF>         189  184  184  184  194.189  128.113
    <FRACTION THREE QUARTERS>   190  185  185  185  194.190  128.114
    <INVERTED QUESTION MARK>    191  171  171  171  194.191  128.115
    <A WITH GRAVE>              192  100  100  100  195.128  138.65
    <A WITH ACUTE>              193  101  101  101  195.129  138.66
    <A WITH CIRCUMFLEX>         194  98   98   98   195.130  138.67
    <A WITH TILDE>              195  102  102  102  195.131  138.68
    <A WITH DIAERESIS>          196  99   99   99   195.132  138.69
    <A WITH RING ABOVE>         197  103  103  103  195.133  138.70
    <CAPITAL LIGATURE AE>       198  158  158  158  195.134  138.71
    <C WITH CEDILLA>            199  104  104  104  195.135  138.72
    <E WITH GRAVE>              200  116  116  116  195.136  138.73
    <E WITH ACUTE>              201  113  113  113  195.137  138.74
    <E WITH CIRCUMFLEX>         202  114  114  114  195.138  138.81
    <E WITH DIAERESIS>          203  115  115  115  195.139  138.82
    <I WITH GRAVE>              204  120  120  120  195.140  138.83
    <I WITH ACUTE>              205  117  117  117  195.141  138.84
    <I WITH CIRCUMFLEX>         206  118  118  118  195.142  138.85
    <I WITH DIAERESIS>          207  119  119  119  195.143  138.86
    <CAPITAL LETTER ETH>        208  172  172  172  195.144  138.87
    <N WITH TILDE>              209  105  105  105  195.145  138.88
    <O WITH GRAVE>              210  237  237  237  195.146  138.89
    <O WITH ACUTE>              211  238  238  238  195.147  138.98
    <O WITH CIRCUMFLEX>         212  235  235  235  195.148  138.99
    <O WITH TILDE>              213  239  239  239  195.149  138.100
    <O WITH DIAERESIS>          214  236  236  236  195.150  138.101
    <MULTIPLICATION SIGN>       215  191  191  191  195.151  138.102
    <O WITH STROKE>             216  128  128  128  195.152  138.103
    <U WITH GRAVE>              217  253  253  224  195.153  138.104  ##
    <U WITH ACUTE>              218  254  254  254  195.154  138.105
    <U WITH CIRCUMFLEX>         219  251  251  221  195.155  138.106  ##
    <U WITH DIAERESIS>          220  252  252  252  195.156  138.112
    <Y WITH ACUTE>              221  173  186  173  195.157  138.113  ** ##
    <CAPITAL LETTER THORN>      222  174  174  174  195.158  138.114
    <SMALL LETTER SHARP S>      223  89   89   89   195.159  138.115
    <a WITH GRAVE>              224  68   68   68   195.160  139.65
    <a WITH ACUTE>              225  69   69   69   195.161  139.66
    <a WITH CIRCUMFLEX>         226  66   66   66   195.162  139.67
    <a WITH TILDE>              227  70   70   70   195.163  139.68
    <a WITH DIAERESIS>          228  67   67   67   195.164  139.69
    <a WITH RING ABOVE>         229  71   71   71   195.165  139.70
    <SMALL LIGATURE ae>         230  156  156  156  195.166  139.71
    <c WITH CEDILLA>            231  72   72   72   195.167  139.72
    <e WITH GRAVE>              232  84   84   84   195.168  139.73
    <e WITH ACUTE>              233  81   81   81   195.169  139.74
    <e WITH CIRCUMFLEX>         234  82   82   82   195.170  139.81
    <e WITH DIAERESIS>          235  83   83   83   195.171  139.82
    <i WITH GRAVE>              236  88   88   88   195.172  139.83
    <i WITH ACUTE>              237  85   85   85   195.173  139.84
    <i WITH CIRCUMFLEX>         238  86   86   86   195.174  139.85
    <i WITH DIAERESIS>          239  87   87   87   195.175  139.86
    <SMALL LETTER eth>          240  140  140  140  195.176  139.87
    <n WITH TILDE>              241  73   73   73   195.177  139.88
    <o WITH GRAVE>              242  205  205  205  195.178  139.89
    <o WITH ACUTE>              243  206  206  206  195.179  139.98
    <o WITH CIRCUMFLEX>         244  203  203  203  195.180  139.99
    <o WITH TILDE>              245  207  207  207  195.181  139.100
    <o WITH DIAERESIS>          246  204  204  204  195.182  139.101
    <DIVISION SIGN>             247  225  225  225  195.183  139.102
    <o WITH STROKE>             248  112  112  112  195.184  139.103
    <u WITH GRAVE>              249  221  221  192  195.185  139.104  ##
    <u WITH ACUTE>              250  222  222  222  195.186  139.105
    <u WITH CIRCUMFLEX>         251  219  219  219  195.187  139.106
    <u WITH DIAERESIS>          252  220  220  220  195.188  139.112
    <y WITH ACUTE>              253  141  141  141  195.189  139.113
    <SMALL LETTER thorn>        254  142  142  142  195.190  139.114
    <y WITH DIAERESIS>          255  223  223  223  195.191  139.115

   If you would rather see the above table in CCSID 0037 order rather than
   ASCII + Latin-1 order then run the table through:

   recipe 4

    perl \
       -ne 'if(/.{29}\d{1,3}\s{2,4}\d{1,3}\s{2,4}\d{1,3}\s{2,4}\d{1,3}/)'\
        -e '{push(@l,$_)}' \
        -e 'END{print map{$_->[0]}' \
        -e '          sort{$a->[1] <=> $b->[1]}' \
        -e '          map{[$_,substr($_,34,3)]}@l;}' perlebcdic.pod

   If you would rather see it in CCSID 1047 order then change the number
   34 in the last line to 39, like this:

   recipe 5

    perl \
       -ne 'if(/.{29}\d{1,3}\s{2,4}\d{1,3}\s{2,4}\d{1,3}\s{2,4}\d{1,3}/)'\
       -e '{push(@l,$_)}' \
       -e 'END{print map{$_->[0]}' \
       -e '          sort{$a->[1] <=> $b->[1]}' \
       -e '          map{[$_,substr($_,39,3)]}@l;}' perlebcdic.pod

   If you would rather see it in POSIX-BC order then change the number 34
   in the last line to 44, like this:

   recipe 6

    perl \
       -ne 'if(/.{29}\d{1,3}\s{2,4}\d{1,3}\s{2,4}\d{1,3}\s{2,4}\d{1,3}/)'\
        -e '{push(@l,$_)}' \
        -e 'END{print map{$_->[0]}' \
        -e '          sort{$a->[1] <=> $b->[1]}' \
        -e '          map{[$_,substr($_,44,3)]}@l;}' perlebcdic.pod

   Table in hex, sorted in 1047 order
   Since this document was first written, the convention has become more
   and more to use hexadecimal notation for code points.  To do this with
   the recipes and to also sort is a multi-step process, so here, for
   convenience, is the table from above, re-sorted to be in Code Page 1047
   order, and using hex notation.

                             ISO
                            8859-1             POS-         CCSID
                            CCSID  CCSID CCSID IX-          1047
     chr                     0819   0037 1047  BC  UTF-8  UTF-EBCDIC
    ---------------------------------------------------------------------
    <NUL>                       00   00   00   00   00       00
    <SOH>                       01   01   01   01   01       01
    <STX>                       02   02   02   02   02       02
    <ETX>                       03   03   03   03   03       03
    <ST>                        9C   04   04   04   C2.9C    04
    <HT>                        09   05   05   05   09       05
    <SSA>                       86   06   06   06   C2.86    06
    <DEL>                       7F   07   07   07   7F       07
    <EPA>                       97   08   08   08   C2.97    08
    <RI>                        8D   09   09   09   C2.8D    09
    <SS2>                       8E   0A   0A   0A   C2.8E    0A
    <VT>                        0B   0B   0B   0B   0B       0B
    <FF>                        0C   0C   0C   0C   0C       0C
    <CR>                        0D   0D   0D   0D   0D       0D
    <SO>                        0E   0E   0E   0E   0E       0E
    <SI>                        0F   0F   0F   0F   0F       0F
    <DLE>                       10   10   10   10   10       10
    <DC1>                       11   11   11   11   11       11
    <DC2>                       12   12   12   12   12       12
    <DC3>                       13   13   13   13   13       13
    <OSC>                       9D   14   14   14   C2.9D    14
    <LF>                        0A   25   15   15   0A       15    **
    <BS>                        08   16   16   16   08       16
    <ESA>                       87   17   17   17   C2.87    17
    <CAN>                       18   18   18   18   18       18
    <EOM>                       19   19   19   19   19       19
    <PU2>                       92   1A   1A   1A   C2.92    1A
    <SS3>                       8F   1B   1B   1B   C2.8F    1B
    <FS>                        1C   1C   1C   1C   1C       1C
    <GS>                        1D   1D   1D   1D   1D       1D
    <RS>                        1E   1E   1E   1E   1E       1E
    <US>                        1F   1F   1F   1F   1F       1F
    <PAD>                       80   20   20   20   C2.80    20
    <HOP>                       81   21   21   21   C2.81    21
    <BPH>                       82   22   22   22   C2.82    22
    <NBH>                       83   23   23   23   C2.83    23
    <IND>                       84   24   24   24   C2.84    24
    <NEL>                       85   15   25   25   C2.85    25     **
    <ETB>                       17   26   26   26   17       26
    <ESC>                       1B   27   27   27   1B       27
    <HTS>                       88   28   28   28   C2.88    28
    <HTJ>                       89   29   29   29   C2.89    29
    <VTS>                       8A   2A   2A   2A   C2.8A    2A
    <PLD>                       8B   2B   2B   2B   C2.8B    2B
    <PLU>                       8C   2C   2C   2C   C2.8C    2C
    <ENQ>                       05   2D   2D   2D   05       2D
    <ACK>                       06   2E   2E   2E   06       2E
    <BEL>                       07   2F   2F   2F   07       2F
    <DCS>                       90   30   30   30   C2.90    30
    <PU1>                       91   31   31   31   C2.91    31
    <SYN>                       16   32   32   32   16       32
    <STS>                       93   33   33   33   C2.93    33
    <CCH>                       94   34   34   34   C2.94    34
    <MW>                        95   35   35   35   C2.95    35
    <SPA>                       96   36   36   36   C2.96    36
    <EOT>                       04   37   37   37   04       37
    <SOS>                       98   38   38   38   C2.98    38
    <SGC>                       99   39   39   39   C2.99    39
    <SCI>                       9A   3A   3A   3A   C2.9A    3A
    <CSI>                       9B   3B   3B   3B   C2.9B    3B
    <DC4>                       14   3C   3C   3C   14       3C
    <NAK>                       15   3D   3D   3D   15       3D
    <PM>                        9E   3E   3E   3E   C2.9E    3E
    <SUB>                       1A   3F   3F   3F   1A       3F
    <SPACE>                     20   40   40   40   20       40
    <NON-BREAKING SPACE>        A0   41   41   41   C2.A0    80.41
    <a WITH CIRCUMFLEX>         E2   42   42   42   C3.A2    8B.43
    <a WITH DIAERESIS>          E4   43   43   43   C3.A4    8B.45
    <a WITH GRAVE>              E0   44   44   44   C3.A0    8B.41
    <a WITH ACUTE>              E1   45   45   45   C3.A1    8B.42
    <a WITH TILDE>              E3   46   46   46   C3.A3    8B.44
    <a WITH RING ABOVE>         E5   47   47   47   C3.A5    8B.46
    <c WITH CEDILLA>            E7   48   48   48   C3.A7    8B.48
    <n WITH TILDE>              F1   49   49   49   C3.B1    8B.58
    <CENT SIGN>                 A2   4A   4A   B0   C2.A2    80.43  ##
    .                           2E   4B   4B   4B   2E       4B
    <                           3C   4C   4C   4C   3C       4C
    (                           28   4D   4D   4D   28       4D
    +                           2B   4E   4E   4E   2B       4E
    |                           7C   4F   4F   4F   7C       4F
    &                           26   50   50   50   26       50
    <e WITH ACUTE>              E9   51   51   51   C3.A9    8B.4A
    <e WITH CIRCUMFLEX>         EA   52   52   52   C3.AA    8B.51
    <e WITH DIAERESIS>          EB   53   53   53   C3.AB    8B.52
    <e WITH GRAVE>              E8   54   54   54   C3.A8    8B.49
    <i WITH ACUTE>              ED   55   55   55   C3.AD    8B.54
    <i WITH CIRCUMFLEX>         EE   56   56   56   C3.AE    8B.55
    <i WITH DIAERESIS>          EF   57   57   57   C3.AF    8B.56
    <i WITH GRAVE>              EC   58   58   58   C3.AC    8B.53
    <SMALL LETTER SHARP S>      DF   59   59   59   C3.9F    8A.73
    !                           21   5A   5A   5A   21       5A
    $                           24   5B   5B   5B   24       5B
    *                           2A   5C   5C   5C   2A       5C
    )                           29   5D   5D   5D   29       5D
    ;                           3B   5E   5E   5E   3B       5E
    ^                           5E   B0   5F   6A   5E       5F     ** ##
    -                           2D   60   60   60   2D       60
    /                           2F   61   61   61   2F       61
    <A WITH CIRCUMFLEX>         C2   62   62   62   C3.82    8A.43
    <A WITH DIAERESIS>          C4   63   63   63   C3.84    8A.45
    <A WITH GRAVE>              C0   64   64   64   C3.80    8A.41
    <A WITH ACUTE>              C1   65   65   65   C3.81    8A.42
    <A WITH TILDE>              C3   66   66   66   C3.83    8A.44
    <A WITH RING ABOVE>         C5   67   67   67   C3.85    8A.46
    <C WITH CEDILLA>            C7   68   68   68   C3.87    8A.48
    <N WITH TILDE>              D1   69   69   69   C3.91    8A.58
    <BROKEN BAR>                A6   6A   6A   D0   C2.A6    80.47  ##
    ,                           2C   6B   6B   6B   2C       6B
    %                           25   6C   6C   6C   25       6C
    _                           5F   6D   6D   6D   5F       6D
    >                           3E   6E   6E   6E   3E       6E
    ?                           3F   6F   6F   6F   3F       6F
    <o WITH STROKE>             F8   70   70   70   C3.B8    8B.67
    <E WITH ACUTE>              C9   71   71   71   C3.89    8A.4A
    <E WITH CIRCUMFLEX>         CA   72   72   72   C3.8A    8A.51
    <E WITH DIAERESIS>          CB   73   73   73   C3.8B    8A.52
    <E WITH GRAVE>              C8   74   74   74   C3.88    8A.49
    <I WITH ACUTE>              CD   75   75   75   C3.8D    8A.54
    <I WITH CIRCUMFLEX>         CE   76   76   76   C3.8E    8A.55
    <I WITH DIAERESIS>          CF   77   77   77   C3.8F    8A.56
    <I WITH GRAVE>              CC   78   78   78   C3.8C    8A.53
    `                           60   79   79   4A   60       79     ##
    :                           3A   7A   7A   7A   3A       7A
    #                           23   7B   7B   7B   23       7B
    @                           40   7C   7C   7C   40       7C
    '                           27   7D   7D   7D   27       7D
    =                           3D   7E   7E   7E   3D       7E
    "                           22   7F   7F   7F   22       7F
    <O WITH STROKE>             D8   80   80   80   C3.98    8A.67
    a                           61   81   81   81   61       81
    b                           62   82   82   82   62       82
    c                           63   83   83   83   63       83
    d                           64   84   84   84   64       84
    e                           65   85   85   85   65       85
    f                           66   86   86   86   66       86
    g                           67   87   87   87   67       87
    h                           68   88   88   88   68       88
    i                           69   89   89   89   69       89
    <LEFT POINTING GUILLEMET>   AB   8A   8A   8A   C2.AB    80.52
    <RIGHT POINTING GUILLEMET>  BB   8B   8B   8B   C2.BB    80.6A
    <SMALL LETTER eth>          F0   8C   8C   8C   C3.B0    8B.57
    <y WITH ACUTE>              FD   8D   8D   8D   C3.BD    8B.71
    <SMALL LETTER thorn>        FE   8E   8E   8E   C3.BE    8B.72
    <PLUS-OR-MINUS SIGN>        B1   8F   8F   8F   C2.B1    80.58
    <DEGREE SIGN>               B0   90   90   90   C2.B0    80.57
    j                           6A   91   91   91   6A       91
    k                           6B   92   92   92   6B       92
    l                           6C   93   93   93   6C       93
    m                           6D   94   94   94   6D       94
    n                           6E   95   95   95   6E       95
    o                           6F   96   96   96   6F       96
    p                           70   97   97   97   70       97
    q                           71   98   98   98   71       98
    r                           72   99   99   99   72       99
    <FEMININE ORDINAL>          AA   9A   9A   9A   C2.AA    80.51
    <MASC. ORDINAL INDICATOR>   BA   9B   9B   9B   C2.BA    80.69
    <SMALL LIGATURE ae>         E6   9C   9C   9C   C3.A6    8B.47
    <CEDILLA>                   B8   9D   9D   9D   C2.B8    80.67
    <CAPITAL LIGATURE AE>       C6   9E   9E   9E   C3.86    8A.47
    <CURRENCY SIGN>             A4   9F   9F   9F   C2.A4    80.45
    <MICRO SIGN>                B5   A0   A0   A0   C2.B5    80.64
    ~                           7E   A1   A1   FF   7E       A1     ##
    s                           73   A2   A2   A2   73       A2
    t                           74   A3   A3   A3   74       A3
    u                           75   A4   A4   A4   75       A4
    v                           76   A5   A5   A5   76       A5
    w                           77   A6   A6   A6   77       A6
    x                           78   A7   A7   A7   78       A7
    y                           79   A8   A8   A8   79       A8
    z                           7A   A9   A9   A9   7A       A9
    <INVERTED "!" >             A1   AA   AA   AA   C2.A1    80.42
    <INVERTED QUESTION MARK>    BF   AB   AB   AB   C2.BF    80.73
    <CAPITAL LETTER ETH>        D0   AC   AC   AC   C3.90    8A.57
    [                           5B   BA   AD   BB   5B       AD     ** ##
    <CAPITAL LETTER THORN>      DE   AE   AE   AE   C3.9E    8A.72
    <REGISTERED TRADE MARK>     AE   AF   AF   AF   C2.AE    80.55
    <NOT SIGN>                  AC   5F   B0   BA   C2.AC    80.53  ** ##
    <POUND SIGN>                A3   B1   B1   B1   C2.A3    80.44
    <YEN SIGN>                  A5   B2   B2   B2   C2.A5    80.46
    <MIDDLE DOT>                B7   B3   B3   B3   C2.B7    80.66
    <COPYRIGHT SIGN>            A9   B4   B4   B4   C2.A9    80.4A
    <SECTION SIGN>              A7   B5   B5   B5   C2.A7    80.48
    <PARAGRAPH SIGN>            B6   B6   B6   B6   C2.B6    80.65
    <FRACTION ONE QUARTER>      BC   B7   B7   B7   C2.BC    80.70
    <FRACTION ONE HALF>         BD   B8   B8   B8   C2.BD    80.71
    <FRACTION THREE QUARTERS>   BE   B9   B9   B9   C2.BE    80.72
    <Y WITH ACUTE>              DD   AD   BA   AD   C3.9D    8A.71  ** ##
    <DIAERESIS>                 A8   BD   BB   79   C2.A8    80.49  ** ##
    <MACRON>                    AF   BC   BC   A1   C2.AF    80.56  ##
    ]                           5D   BB   BD   BD   5D       BD     **
    <ACUTE ACCENT>              B4   BE   BE   BE   C2.B4    80.63
    <MULTIPLICATION SIGN>       D7   BF   BF   BF   C3.97    8A.66
    {                           7B   C0   C0   FB   7B       C0     ##
    A                           41   C1   C1   C1   41       C1
    B                           42   C2   C2   C2   42       C2
    C                           43   C3   C3   C3   43       C3
    D                           44   C4   C4   C4   44       C4
    E                           45   C5   C5   C5   45       C5
    F                           46   C6   C6   C6   46       C6
    G                           47   C7   C7   C7   47       C7
    H                           48   C8   C8   C8   48       C8
    I                           49   C9   C9   C9   49       C9
    <SOFT HYPHEN>               AD   CA   CA   CA   C2.AD    80.54
    <o WITH CIRCUMFLEX>         F4   CB   CB   CB   C3.B4    8B.63
    <o WITH DIAERESIS>          F6   CC   CC   CC   C3.B6    8B.65
    <o WITH GRAVE>              F2   CD   CD   CD   C3.B2    8B.59
    <o WITH ACUTE>              F3   CE   CE   CE   C3.B3    8B.62
    <o WITH TILDE>              F5   CF   CF   CF   C3.B5    8B.64
    }                           7D   D0   D0   FD   7D       D0     ##
    J                           4A   D1   D1   D1   4A       D1
    K                           4B   D2   D2   D2   4B       D2
    L                           4C   D3   D3   D3   4C       D3
    M                           4D   D4   D4   D4   4D       D4
    N                           4E   D5   D5   D5   4E       D5
    O                           4F   D6   D6   D6   4F       D6
    P                           50   D7   D7   D7   50       D7
    Q                           51   D8   D8   D8   51       D8
    R                           52   D9   D9   D9   52       D9
    <SUPERSCRIPT ONE>           B9   DA   DA   DA   C2.B9    80.68
    <u WITH CIRCUMFLEX>         FB   DB   DB   DB   C3.BB    8B.6A
    <u WITH DIAERESIS>          FC   DC   DC   DC   C3.BC    8B.70
    <u WITH GRAVE>              F9   DD   DD   C0   C3.B9    8B.68  ##
    <u WITH ACUTE>              FA   DE   DE   DE   C3.BA    8B.69
    <y WITH DIAERESIS>          FF   DF   DF   DF   C3.BF    8B.73
    \                           5C   E0   E0   BC   5C       E0     ##
    <DIVISION SIGN>             F7   E1   E1   E1   C3.B7    8B.66
    S                           53   E2   E2   E2   53       E2
    T                           54   E3   E3   E3   54       E3
    U                           55   E4   E4   E4   55       E4
    V                           56   E5   E5   E5   56       E5
    W                           57   E6   E6   E6   57       E6
    X                           58   E7   E7   E7   58       E7
    Y                           59   E8   E8   E8   59       E8
    Z                           5A   E9   E9   E9   5A       E9
    <SUPERSCRIPT TWO>           B2   EA   EA   EA   C2.B2    80.59
    <O WITH CIRCUMFLEX>         D4   EB   EB   EB   C3.94    8A.63
    <O WITH DIAERESIS>          D6   EC   EC   EC   C3.96    8A.65
    <O WITH GRAVE>              D2   ED   ED   ED   C3.92    8A.59
    <O WITH ACUTE>              D3   EE   EE   EE   C3.93    8A.62
    <O WITH TILDE>              D5   EF   EF   EF   C3.95    8A.64
    0                           30   F0   F0   F0   30       F0
    1                           31   F1   F1   F1   31       F1
    2                           32   F2   F2   F2   32       F2
    3                           33   F3   F3   F3   33       F3
    4                           34   F4   F4   F4   34       F4
    5                           35   F5   F5   F5   35       F5
    6                           36   F6   F6   F6   36       F6
    7                           37   F7   F7   F7   37       F7
    8                           38   F8   F8   F8   38       F8
    9                           39   F9   F9   F9   39       F9
    <SUPERSCRIPT THREE>         B3   FA   FA   FA   C2.B3    80.62
    <U WITH CIRCUMFLEX>         DB   FB   FB   DD   C3.9B    8A.6A  ##
    <U WITH DIAERESIS>          DC   FC   FC   FC   C3.9C    8A.70
    <U WITH GRAVE>              D9   FD   FD   E0   C3.99    8A.68  ##
    <U WITH ACUTE>              DA   FE   FE   FE   C3.9A    8A.69
    <APC>                       9F   FF   FF   5F   C2.9F    FF     ##

IDENTIFYING CHARACTER CODE SETS

   It is possible to determine which character set you are operating
   under.  But first you need to be really really sure you need to do
   this.  Your code will be simpler and probably just as portable if you
   don't have to test the character set and do different things,
   depending.  There are actually only very few circumstances where it's
   not easy to write straight-line code portable to all character sets.
   See "Unicode and EBCDIC" in perluniintro for how to portably specify
   characters.

   But there are some cases where you may want to know which character set
   you are running under.  One possible example is doing sorting in inner
   loops where performance is critical.

   To determine if you are running under ASCII or EBCDIC, you can use the
   return value of "ord()" or "chr()" to test one or more character
   values.  For example:

       $is_ascii  = "A" eq chr(65);
       $is_ebcdic = "A" eq chr(193);
       $is_ascii  = ord("A") == 65;
       $is_ebcdic = ord("A") == 193;

   There's even less need to distinguish between EBCDIC code pages, but to
   do so try looking at one or more of the characters that differ between
   them.

       $is_ascii           = ord('[') == 91;
       $is_ebcdic_37       = ord('[') == 186;
       $is_ebcdic_1047     = ord('[') == 173;
       $is_ebcdic_POSIX_BC = ord('[') == 187;

   However, it would be unwise to write tests such as:

       $is_ascii = "\r" ne chr(13);  #  WRONG
       $is_ascii = "\n" ne chr(10);  #  ILL ADVISED

   Obviously the first of these will fail to distinguish most ASCII
   platforms from either a CCSID 0037, a 1047, or a POSIX-BC EBCDIC
   platform since ""\r"eqchr(13)" under all of those coded character
   sets.  But note too that because "\n" is "chr(13)" and "\r" is
   "chr(10)" on old Macintosh (which is an ASCII platform) the second
   $is_ascii test will lead to trouble there.

   To determine whether or not perl was built under an EBCDIC code page
   you can use the Config module like so:

       use Config;
       $is_ebcdic = $Config{'ebcdic'} eq 'define';

CONVERSIONS

   "utf8::unicode_to_native()" and "utf8::native_to_unicode()"
   These functions take an input numeric code point in one encoding and
   return what its equivalent value is in the other.

   See utf8.

   tr///
   In order to convert a string of characters from one character set to
   another a simple list of numbers, such as in the right columns in the
   above table, along with Perl's "tr///" operator is all that is needed.
   The data in the table are in ASCII/Latin1 order, hence the EBCDIC
   columns provide easy-to-use ASCII/Latin1 to EBCDIC operations that are
   also easily reversed.

   For example, to convert ASCII/Latin1 to code page 037 take the output
   of the second numbers column from the output of recipe 2 (modified to
   add "\" characters), and use it in "tr///" like so:

       $cp_037 =
       '\x00\x01\x02\x03\x37\x2D\x2E\x2F\x16\x05\x25\x0B\x0C\x0D\x0E\x0F' .
       '\x10\x11\x12\x13\x3C\x3D\x32\x26\x18\x19\x3F\x27\x1C\x1D\x1E\x1F' .
       '\x40\x5A\x7F\x7B\x5B\x6C\x50\x7D\x4D\x5D\x5C\x4E\x6B\x60\x4B\x61' .
       '\xF0\xF1\xF2\xF3\xF4\xF5\xF6\xF7\xF8\xF9\x7A\x5E\x4C\x7E\x6E\x6F' .
       '\x7C\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xD1\xD2\xD3\xD4\xD5\xD6' .
       '\xD7\xD8\xD9\xE2\xE3\xE4\xE5\xE6\xE7\xE8\xE9\xBA\xE0\xBB\xB0\x6D' .
       '\x79\x81\x82\x83\x84\x85\x86\x87\x88\x89\x91\x92\x93\x94\x95\x96' .
       '\x97\x98\x99\xA2\xA3\xA4\xA5\xA6\xA7\xA8\xA9\xC0\x4F\xD0\xA1\x07' .
       '\x20\x21\x22\x23\x24\x15\x06\x17\x28\x29\x2A\x2B\x2C\x09\x0A\x1B' .
       '\x30\x31\x1A\x33\x34\x35\x36\x08\x38\x39\x3A\x3B\x04\x14\x3E\xFF' .
       '\x41\xAA\x4A\xB1\x9F\xB2\x6A\xB5\xBD\xB4\x9A\x8A\x5F\xCA\xAF\xBC' .
       '\x90\x8F\xEA\xFA\xBE\xA0\xB6\xB3\x9D\xDA\x9B\x8B\xB7\xB8\xB9\xAB' .
       '\x64\x65\x62\x66\x63\x67\x9E\x68\x74\x71\x72\x73\x78\x75\x76\x77' .
       '\xAC\x69\xED\xEE\xEB\xEF\xEC\xBF\x80\xFD\xFE\xFB\xFC\xAD\xAE\x59' .
       '\x44\x45\x42\x46\x43\x47\x9C\x48\x54\x51\x52\x53\x58\x55\x56\x57' .
       '\x8C\x49\xCD\xCE\xCB\xCF\xCC\xE1\x70\xDD\xDE\xDB\xDC\x8D\x8E\xDF';

       my $ebcdic_string = $ascii_string;
       eval '$ebcdic_string =~ tr/\000-\377/' . $cp_037 . '/';

   To convert from EBCDIC 037 to ASCII just reverse the order of the tr///
   arguments like so:

       my $ascii_string = $ebcdic_string;
       eval '$ascii_string =~ tr/' . $cp_037 . '/\000-\377/';

   Similarly one could take the output of the third numbers column from
   recipe 2 to obtain a $cp_1047 table.  The fourth numbers column of the
   output from recipe 2 could provide a $cp_posix_bc table suitable for
   transcoding as well.

   If you wanted to see the inverse tables, you would first have to sort
   on the desired numbers column as in recipes 4, 5 or 6, then take the
   output of the first numbers column.

   iconv
   XPG operability often implies the presence of an iconv utility
   available from the shell or from the C library.  Consult your system's
   documentation for information on iconv.

   On OS/390 or z/OS see the iconv(1) manpage.  One way to invoke the
   "iconv" shell utility from within perl would be to:

       # OS/390 or z/OS example
       $ascii_data = `echo '$ebcdic_data'| iconv -f IBM-1047 -t ISO8859-1`

   or the inverse map:

       # OS/390 or z/OS example
       $ebcdic_data = `echo '$ascii_data'| iconv -f ISO8859-1 -t IBM-1047`

   For other Perl-based conversion options see the "Convert::*" modules on
   CPAN.

   C RTL
   The OS/390 and z/OS C run-time libraries provide "_atoe()" and
   "_etoa()" functions.

OPERATOR DIFFERENCES

   The ".." range operator treats certain character ranges with care on
   EBCDIC platforms.  For example the following array will have twenty six
   elements on either an EBCDIC platform or an ASCII platform:

       @alphabet = ('A'..'Z');   #  $#alphabet == 25

   The bitwise operators such as & ^ | may return different results when
   operating on string or character data in a Perl program running on an
   EBCDIC platform than when run on an ASCII platform.  Here is an example
   adapted from the one in perlop:

       # EBCDIC-based examples
       print "j p \n" ^ " a h";                      # prints "JAPH\n"
       print "JA" | "  ph\n";                        # prints "japh\n"
       print "JAPH\nJunk" & "\277\277\277\277\277";  # prints "japh\n";
       print 'p N$' ^ " E<H\n";                      # prints "Perl\n";

   An interesting property of the 32 C0 control characters in the ASCII
   table is that they can "literally" be constructed as control characters
   in Perl, e.g. "(chr(0)" eq "\c@")> "(chr(1)" eq "\cA")>, and so on.
   Perl on EBCDIC platforms has been ported to take "\c@" to chr(0) and
   "\cA" to chr(1), etc. as well, but the characters that result depend on
   which code page you are using.  The table below uses the standard
   acronyms for the controls.  The POSIX-BC and 1047 sets are identical
   throughout this range and differ from the 0037 set at only one spot (21
   decimal).  Note that the line terminator character may be generated by
   "\cJ" on ASCII platforms but by "\cU" on 1047 or POSIX-BC platforms and
   cannot be generated as a "\c.letter." control character on 0037
   platforms.  Note also that "\c\" cannot be the final element in a
   string or regex, as it will absorb the terminator.   But "\c\X" is a
   "FILE SEPARATOR" concatenated with X for all X.  The outlier "\c?" on
   ASCII, which yields a non-C0 control "DEL", yields the outlier control
   "APC" on EBCDIC, the one that isn't in the block of contiguous
   controls.  Note that a subtlety of this is that "\c?" on ASCII
   platforms is an ASCII character, while it isn't equivalent to any ASCII
   character in EBCDIC platforms.

    chr   ord   8859-1    0037    1047 && POSIX-BC
    -----------------------------------------------------------------------
    \c@     0   <NUL>     <NUL>        <NUL>
    \cA     1   <SOH>     <SOH>        <SOH>
    \cB     2   <STX>     <STX>        <STX>
    \cC     3   <ETX>     <ETX>        <ETX>
    \cD     4   <EOT>     <ST>         <ST>
    \cE     5   <ENQ>     <HT>         <HT>
    \cF     6   <ACK>     <SSA>        <SSA>
    \cG     7   <BEL>     <DEL>        <DEL>
    \cH     8   <BS>      <EPA>        <EPA>
    \cI     9   <HT>      <RI>         <RI>
    \cJ    10   <LF>      <SS2>        <SS2>
    \cK    11   <VT>      <VT>         <VT>
    \cL    12   <FF>      <FF>         <FF>
    \cM    13   <CR>      <CR>         <CR>
    \cN    14   <SO>      <SO>         <SO>
    \cO    15   <SI>      <SI>         <SI>
    \cP    16   <DLE>     <DLE>        <DLE>
    \cQ    17   <DC1>     <DC1>        <DC1>
    \cR    18   <DC2>     <DC2>        <DC2>
    \cS    19   <DC3>     <DC3>        <DC3>
    \cT    20   <DC4>     <OSC>        <OSC>
    \cU    21   <NAK>     <NEL>        <LF>              **
    \cV    22   <SYN>     <BS>         <BS>
    \cW    23   <ETB>     <ESA>        <ESA>
    \cX    24   <CAN>     <CAN>        <CAN>
    \cY    25   <EOM>     <EOM>        <EOM>
    \cZ    26   <SUB>     <PU2>        <PU2>
    \c[    27   <ESC>     <SS3>        <SS3>
    \c\X   28   <FS>X     <FS>X        <FS>X
    \c]    29   <GS>      <GS>         <GS>
    \c^    30   <RS>      <RS>         <RS>
    \c_    31   <US>      <US>         <US>
    \c?    *    <DEL>     <APC>        <APC>

   "*" Note: "\c?" maps to ordinal 127 ("DEL") on ASCII platforms, but
   since ordinal 127 is a not a control character on EBCDIC machines,
   "\c?" instead maps on them to "APC", which is 255 in 0037 and 1047, and
   95 in POSIX-BC.

FUNCTION DIFFERENCES

   "chr()" "chr()" must be given an EBCDIC code number argument to yield a
           desired character return value on an EBCDIC platform.  For
           example:

               $CAPITAL_LETTER_A = chr(193);

   "ord()" "ord()" will return EBCDIC code number values on an EBCDIC
           platform.  For example:

               $the_number_193 = ord("A");

   "pack()"
           The "c" and "C" templates for "pack()" are dependent upon
           character set encoding.  Examples of usage on EBCDIC include:

               $foo = pack("CCCC",193,194,195,196);
               # $foo eq "ABCD"
               $foo = pack("C4",193,194,195,196);
               # same thing

               $foo = pack("ccxxcc",193,194,195,196);
               # $foo eq "AB\0\0CD"

           The "U" template has been ported to mean "Unicode" on all
           platforms so that

               pack("U", 65) eq 'A'

           is true on all platforms.  If you want native code points for
           the low 256, use the "W" template.  This means that the
           equivalences

               pack("W", ord($character)) eq $character
               unpack("W", $character) == ord $character

           will hold.

   "print()"
           One must be careful with scalars and strings that are passed to
           print that contain ASCII encodings.  One common place for this
           to occur is in the output of the MIME type header for CGI
           script writing.  For example, many Perl programming guides
           recommend something similar to:

               print "Content-type:\ttext/html\015\012\015\012";
               # this may be wrong on EBCDIC

           You can instead write

               print "Content-type:\ttext/html\r\n\r\n"; # OK for DGW et al

           and have it work portably.

           That is because the translation from EBCDIC to ASCII is done by
           the web server in this case.  Consult your web server's
           documentation for further details.

   "printf()"
           The formats that can convert characters to numbers and vice
           versa will be different from their ASCII counterparts when
           executed on an EBCDIC platform.  Examples include:

               printf("%c%c%c",193,194,195);  # prints ABC

   "sort()"
           EBCDIC sort results may differ from ASCII sort results
           especially for mixed case strings.  This is discussed in more
           detail below.

   "sprintf()"
           See the discussion of "printf()" above.  An example of the use
           of sprintf would be:

               $CAPITAL_LETTER_A = sprintf("%c",193);

   "unpack()"
           See the discussion of "pack()" above.

   Note that it is possible to write portable code for these by specifying
   things in Unicode numbers, and using a conversion function:

       printf("%c",utf8::unicode_to_native(65));  # prints A on all
                                                  # platforms
       print utf8::native_to_unicode(ord("A"));   # Likewise, prints 65

   See "Unicode and EBCDIC" in perluniintro and "CONVERSIONS" for other
   options.

REGULAR EXPRESSION DIFFERENCES

   You can write your regular expressions just like someone on an ASCII
   platform would do.  But keep in mind that using octal or hex notation
   to specify a particular code point will give you the character that the
   EBCDIC code page natively maps to it.   (This is also true of all
   double-quoted strings.)  If you want to write portably, just use the
   "\N{U+...}" notation everywhere where you would have used "\x{...}",
   and don't use octal notation at all.

   Starting in Perl v5.22, this applies to ranges in bracketed character
   classes.  If you say, for example, "qr/[\N{U+20}-\N{U+7F}]/", it means
   the characters "\N{U+20}", "\N{U+21}", ..., "\N{U+7F}".  This range is
   all the printable characters that the ASCII character set contains.

   Prior to v5.22, you couldn't specify any ranges portably, except
   (starting in Perl v5.5.3) all subsets of the "[A-Z]" and "[a-z]" ranges
   are specially coded to not pick up gap characters.  For example,
   characters such as "" ("o WITH CIRCUMFLEX") that lie between "I" and
   "J" would not be matched by the regular expression range "/[H-K]/".
   But if either of the range end points is explicitly numeric (and
   neither is specified by "\N{U+...}"), the gap characters are matched:

       /[\x89-\x91]/

   will match "\x8e", even though "\x89" is "i" and "\x91 " is "j", and
   "\x8e" is a gap character, from the alphabetic viewpoint.

   Another construct to be wary of is the inappropriate use of hex (unless
   you use "\N{U+...}") or octal constants in regular expressions.
   Consider the following set of subs:

       sub is_c0 {
           my $char = substr(shift,0,1);
           $char =~ /[\000-\037]/;
       }

       sub is_print_ascii {
           my $char = substr(shift,0,1);
           $char =~ /[\040-\176]/;
       }

       sub is_delete {
           my $char = substr(shift,0,1);
           $char eq "\177";
       }

       sub is_c1 {
           my $char = substr(shift,0,1);
           $char =~ /[\200-\237]/;
       }

       sub is_latin_1 {    # But not ASCII; not C1
           my $char = substr(shift,0,1);
           $char =~ /[\240-\377]/;
       }

   These are valid only on ASCII platforms.  Starting in Perl v5.22,
   simply changing the octal constants to equivalent "\N{U+...}" values
   makes them portable:

       sub is_c0 {
           my $char = substr(shift,0,1);
           $char =~ /[\N{U+00}-\N{U+1F}]/;
       }

       sub is_print_ascii {
           my $char = substr(shift,0,1);
           $char =~ /[\N{U+20}-\N{U+7E}]/;
       }

       sub is_delete {
           my $char = substr(shift,0,1);
           $char eq "\N{U+7F}";
       }

       sub is_c1 {
           my $char = substr(shift,0,1);
           $char =~ /[\N{U+80}-\N{U+9F}]/;
       }

       sub is_latin_1 {    # But not ASCII; not C1
           my $char = substr(shift,0,1);
           $char =~ /[\N{U+A0}-\N{U+FF}]/;
       }

   And here are some alternative portable ways to write them:

       sub Is_c0 {
           my $char = substr(shift,0,1);
           return $char =~ /[[:cntrl:]]/a && ! Is_delete($char);

           # Alternatively:
           # return $char =~ /[[:cntrl:]]/
           #        && $char =~ /[[:ascii:]]/
           #        && ! Is_delete($char);
       }

       sub Is_print_ascii {
           my $char = substr(shift,0,1);

           return $char =~ /[[:print:]]/a;

           # Alternatively:
           # return $char =~ /[[:print:]]/ && $char =~ /[[:ascii:]]/;

           # Or
           # return $char
           #      =~ /[ !"\#\$%&'()*+,\-.\/0-9:;<=>?\@A-Z[\\\]^_`a-z{|}~]/;
       }

       sub Is_delete {
           my $char = substr(shift,0,1);
           return utf8::native_to_unicode(ord $char) == 0x7F;
       }

       sub Is_c1 {
           use feature 'unicode_strings';
           my $char = substr(shift,0,1);
           return $char =~ /[[:cntrl:]]/ && $char !~ /[[:ascii:]]/;
       }

       sub Is_latin_1 {    # But not ASCII; not C1
           use feature 'unicode_strings';
           my $char = substr(shift,0,1);
           return ord($char) < 256
                  && $char !~ /[[:ascii:]]/
                  && $char !~ /[[:cntrl:]]/;
       }

   Another way to write "Is_latin_1()" would be to use the characters in
   the range explicitly:

       sub Is_latin_1 {
           my $char = substr(shift,0,1);
           $char =~ /[*]
                     []/x;
       }

   Although that form may run into trouble in network transit (due to the
   presence of 8 bit characters) or on non ISO-Latin character sets.  But
   it does allow "Is_c1" to be rewritten so it works on Perls that don't
   have 'unicode_strings' (earlier than v5.14):

       sub Is_latin_1 {    # But not ASCII; not C1
           my $char = substr(shift,0,1);
           return ord($char) < 256
                  && $char !~ /[[:ascii:]]/
                  && ! Is_latin1($char);
       }

SOCKETS

   Most socket programming assumes ASCII character encodings in network
   byte order.  Exceptions can include CGI script writing under a host web
   server where the server may take care of translation for you.  Most
   host web servers convert EBCDIC data to ISO-8859-1 or Unicode on
   output.

SORTING

   One big difference between ASCII-based character sets and EBCDIC ones
   are the relative positions of the characters when sorted in native
   order.  Of most concern are the upper- and lowercase letters, the
   digits, and the underscore ("_").  On ASCII platforms the native sort
   order has the digits come before the uppercase letters which come
   before the underscore which comes before the lowercase letters.  On
   EBCDIC, the underscore comes first, then the lowercase letters, then
   the uppercase ones, and the digits last.  If sorted on an ASCII-based
   platform, the two-letter abbreviation for a physician comes before the
   two letter abbreviation for drive; that is:

    @sorted = sort(qw(Dr. dr.));  # @sorted holds ('Dr.','dr.') on ASCII,
                                     # but ('dr.','Dr.') on EBCDIC

   The property of lowercase before uppercase letters in EBCDIC is even
   carried to the Latin 1 EBCDIC pages such as 0037 and 1047.  An example
   would be that "" ("E WITH DIAERESIS", 203) comes before "" ("e WITH
   DIAERESIS", 235) on an ASCII platform, but the latter (83) comes before
   the former (115) on an EBCDIC platform.  (Astute readers will note that
   the uppercase version of "" "SMALL LETTER SHARP S" is simply "SS" and
   that the upper case versions of "" (small "y WITH DIAERESIS") and ""
   ("MICRO SIGN") are not in the 0..255 range but are in Unicode, in a
   Unicode enabled Perl).

   The sort order will cause differences between results obtained on ASCII
   platforms versus EBCDIC platforms.  What follows are some suggestions
   on how to deal with these differences.

   Ignore ASCII vs. EBCDIC sort differences.
   This is the least computationally expensive strategy.  It may require
   some user education.

   Use a sort helper function
   This is completely general, but the most computationally expensive
   strategy.  Choose one or the other character set and transform to that
   for every sort comparision.  Here's a complete example that transforms
   to ASCII sort order:

    sub native_to_uni($) {
       my $string = shift;

       # Saves time on an ASCII platform
       return $string if ord 'A' ==  65;

       my $output = "";
       for my $i (0 .. length($string) - 1) {
           $output
              .= chr(utf8::native_to_unicode(ord(substr($string, $i, 1))));
       }

       # Preserve utf8ness of input onto the output, even if it didn't need
       # to be utf8
       utf8::upgrade($output) if utf8::is_utf8($string);

       return $output;
    }

    sub ascii_order {   # Sort helper
       return native_to_uni($a) cmp native_to_uni($b);
    }

    sort ascii_order @list;

   MONO CASE then sort data (for non-digits, non-underscore)
   If you don't care about where digits and underscore sort to, you can do
   something like this

    sub case_insensitive_order {   # Sort helper
       return lc($a) cmp lc($b)
    }

    sort case_insensitive_order @list;

   If performance is an issue, and you don't care if the output is in the
   same case as the input, Use "tr///" to transform to the case most
   employed within the data.  If the data are primarily UPPERCASE
   non-Latin1, then apply "tr/[a-z]/[A-Z]/", and then "sort()".  If the
   data are primarily lowercase non Latin1 then apply "tr/[A-Z]/[a-z]/"
   before sorting.  If the data are primarily UPPERCASE and include
   Latin-1 characters then apply:

      tr/[a-z]/[A-Z]/;
      tr/[]/[/;
      s//SS/g;

   then "sort()".  If you have a choice, it's better to lowercase things
   to avoid the problems of the two Latin-1 characters whose uppercase is
   outside Latin-1: "" (small "y WITH DIAERESIS") and "" ("MICRO SIGN").
   If you do need to upppercase, you can; with a Unicode-enabled Perl, do:

       tr//\x{178}/;
       tr//\x{39C}/;

   Perform sorting on one type of platform only.
   This strategy can employ a network connection.  As such it would be
   computationally expensive.

TRANSFORMATION FORMATS

   There are a variety of ways of transforming data with an intra
   character set mapping that serve a variety of purposes.  Sorting was
   discussed in the previous section and a few of the other more popular
   mapping techniques are discussed next.

   URL decoding and encoding
   Note that some URLs have hexadecimal ASCII code points in them in an
   attempt to overcome character or protocol limitation issues.  For
   example the tilde character is not on every keyboard hence a URL of the
   form:

       http://www.pvhp.com/~pvhp/

   may also be expressed as either of:

       http://www.pvhp.com/%7Epvhp/

       http://www.pvhp.com/%7epvhp/

   where 7E is the hexadecimal ASCII code point for "~".  Here is an
   example of decoding such a URL in any EBCDIC code page:

       $url = 'http://www.pvhp.com/%7Epvhp/';
       $url =~ s/%([0-9a-fA-F]{2})/
                 pack("c",utf8::unicode_to_native(hex($1)))/xge;

   Conversely, here is a partial solution for the task of encoding such a
   URL in any EBCDIC code page:

       $url = 'http://www.pvhp.com/~pvhp/';
       # The following regular expression does not address the
       # mappings for: ('.' => '%2E', '/' => '%2F', ':' => '%3A')
       $url =~ s/([\t "#%&\(\),;<=>\?\@\[\\\]^`{|}~])/
                  sprintf("%%%02X",utf8::native_to_unicode(ord($1)))/xge;

   where a more complete solution would split the URL into components and
   apply a full s/// substitution only to the appropriate parts.

   uu encoding and decoding
   The "u" template to "pack()" or "unpack()" will render EBCDIC data in
   EBCDIC characters equivalent to their ASCII counterparts.  For example,
   the following will print "Yes indeed\n" on either an ASCII or EBCDIC
   computer:

       $all_byte_chrs = '';
       for (0..255) { $all_byte_chrs .= chr($_); }
       $uuencode_byte_chrs = pack('u', $all_byte_chrs);
       ($uu = <<'ENDOFHEREDOC') =~ s/^\s*//gm;
       M``$"`P0%!@<("0H+#`T.#Q`1$A,4%187&!D:&QP='A\@(2(C)"4F)R@I*BLL
       M+2XO,#$R,S0U-C<X.3H[/#T^/T!!0D-$149'2$E*2TQ-3D]045)35%565UA9
       M6EM<75Y?8&%B8V1E9F=H:6IK;&UN;W!Q<G-T=79W>'EZ>WQ]?G^`@8*#A(6&
       MAXB)BHN,C8Z/D)&2DY25EI>8F9J;G)V>GZ"AHJ.DI::GJ*FJJZRMKJ^PL;*S
       MM+6VM[BYNKN\O;Z_P,'"P\3%QL?(R<K+S,W.S]#1TM/4U=;7V-G:V]S=WM_@
       ?X>+CY.7FY^CIZNOL[>[O\/'R\_3U]O?X^?K[_/W^_P``
       ENDOFHEREDOC
       if ($uuencode_byte_chrs eq $uu) {
           print "Yes ";
       }
       $uudecode_byte_chrs = unpack('u', $uuencode_byte_chrs);
       if ($uudecode_byte_chrs eq $all_byte_chrs) {
           print "indeed\n";
       }

   Here is a very spartan uudecoder that will work on EBCDIC:

       #!/usr/local/bin/perl
       $_ = <> until ($mode,$file) = /^begin\s*(\d*)\s*(\S*)/;
       open(OUT, "> $file") if $file ne "";
       while(<>) {
           last if /^end/;
           next if /[a-z]/;
           next unless int((((utf8::native_to_unicode(ord()) - 32 ) & 077)
                                                                  + 2) / 3)
                       == int(length() / 4);
           print OUT unpack("u", $_);
       }
       close(OUT);
       chmod oct($mode), $file;

   Quoted-Printable encoding and decoding
   On ASCII-encoded platforms it is possible to strip characters outside
   of the printable set using:

       # This QP encoder works on ASCII only
       $qp_string =~ s/([=\x00-\x1F\x80-\xFF])/
                       sprintf("=%02X",ord($1))/xge;

   Starting in Perl v5.22, this is trivially changeable to work portably
   on both ASCII and EBCDIC platforms.

       # This QP encoder works on both ASCII and EBCDIC
       $qp_string =~ s/([=\N{U+00}-\N{U+1F}\N{U+80}-\N{U+FF}])/
                       sprintf("=%02X",ord($1))/xge;

   For earlier Perls, a QP encoder that works on both ASCII and EBCDIC
   platforms would look somewhat like the following:

       $delete = utf8::unicode_to_native(ord("\x7F"));
       $qp_string =~
         s/([^[:print:]$delete])/
            sprintf("=%02X",utf8::native_to_unicode(ord($1)))/xage;

   (although in production code the substitutions might be done in the
   EBCDIC branch with the function call and separately in the ASCII branch
   without the expense of the identity map; in Perl v5.22, the identity
   map is optimized out so there is no expense, but the alternative above
   is simpler and is also available in v5.22).

   Such QP strings can be decoded with:

       # This QP decoder is limited to ASCII only
       $string =~ s/=([[:xdigit:][[:xdigit:])/chr hex $1/ge;
       $string =~ s/=[\n\r]+$//;

   Whereas a QP decoder that works on both ASCII and EBCDIC platforms
   would look somewhat like the following:

       $string =~ s/=([[:xdigit:][:xdigit:]])/
                                   chr utf8::native_to_unicode(hex $1)/xge;
       $string =~ s/=[\n\r]+$//;

   Caesarean ciphers
   The practice of shifting an alphabet one or more characters for
   encipherment dates back thousands of years and was explicitly detailed
   by Gaius Julius Caesar in his Gallic Wars text.  A single alphabet
   shift is sometimes referred to as a rotation and the shift amount is
   given as a number $n after the string 'rot' or "rot$n".  Rot0 and rot26
   would designate identity maps on the 26-letter English version of the
   Latin alphabet.  Rot13 has the interesting property that alternate
   subsequent invocations are identity maps (thus rot13 is its own non-
   trivial inverse in the group of 26 alphabet rotations).  Hence the
   following is a rot13 encoder and decoder that will work on ASCII and
   EBCDIC platforms:

       #!/usr/local/bin/perl

       while(<>){
           tr/n-za-mN-ZA-M/a-zA-Z/;
           print;
       }

   In one-liner form:

       perl -ne 'tr/n-za-mN-ZA-M/a-zA-Z/;print'

Hashing order and checksums

   Perl deliberately randomizes hash order for security purposes on both
   ASCII and EBCDIC platforms.

   EBCDIC checksums will differ for the same file translated into ASCII
   and vice versa.

I18N AND L10N

   Internationalization (I18N) and localization (L10N) are supported at
   least in principle even on EBCDIC platforms.  The details are system-
   dependent and discussed under the "OS ISSUES" section below.

MULTI-OCTET CHARACTER SETS

   Perl works with UTF-EBCDIC, a multi-byte encoding.  In Perls earlier
   than v5.22, there may be various bugs in this regard.

   Legacy multi byte EBCDIC code pages XXX.

OS ISSUES

   There may be a few system-dependent issues of concern to EBCDIC Perl
   programmers.

   OS/400
   PASE    The PASE environment is a runtime environment for OS/400 that
           can run executables built for PowerPC AIX in OS/400; see
           perlos400.  PASE is ASCII-based, not EBCDIC-based as the ILE.

   IFS access
           XXX.

   OS/390, z/OS
   Perl runs under Unix Systems Services or USS.

   "sigaction"
           "SA_SIGINFO" can have segmentation faults.

   "chcp"  chcp is supported as a shell utility for displaying and
           changing one's code page.  See also chcp(1).

   dataset access
           For sequential data set access try:

               my @ds_records = `cat //DSNAME`;

           or:

               my @ds_records = `cat //'HLQ.DSNAME'`;

           See also the OS390::Stdio module on CPAN.

   "iconv" iconv is supported as both a shell utility and a C RTL routine.
           See also the iconv(1) and iconv(3) manual pages.

   locales Locales are supported.  There may be glitches when a locale is
           another EBCDIC code page which has some of the code-page
           variant characters in other positions.

           There aren't currently any real UTF-8 locales, even though some
           locale names contain the string "UTF-8".

           See perllocale for information on locales.  The L10N files are
           in /usr/nls/locale.  $Config{d_setlocale} is 'define' on OS/390
           or z/OS.

   POSIX-BC?
   XXX.

BUGS

   *   Not all shells will allow multiple "-e" string arguments to perl to
       be concatenated together properly as recipes in this document 0, 2,
       4, 5, and 6 might seem to imply.

   *   There are a significant number of test failures in the CPAN modules
       shipped with Perl v5.22 and 5.24.  These are only in modules not
       primarily maintained by Perl 5 porters.  Some of these are failures
       in the tests only: they don't realize that it is proper to get
       different results on EBCDIC platforms.  And some of the failures
       are real bugs.  If you compile and do a "make test" on Perl, all
       tests on the "/cpan" directory are skipped.

       In particular, the (now deprecated) encoding pragma is not
       supported under EBCDIC.

       Encode partially works.

   *   In earlier Perl versions, when byte and character data were
       concatenated, the new string was sometimes created by decoding the
       byte strings as ISO 8859-1 (Latin-1), even if the old Unicode
       string used EBCDIC.

SEE ALSO

   perllocale, perlfunc, perlunicode, utf8.

REFERENCES

   <http://anubis.dkuug.dk/i18n/charmaps>

   <http://www.unicode.org/>

   <http://www.unicode.org/unicode/reports/tr16/>

   <http://www.wps.com/projects/codes/> ASCII: American Standard Code for
   Information Infiltration Tom Jennings, September 1999.

   The Unicode Standard, Version 3.0 The Unicode Consortium, Lisa Moore
   ed., ISBN 0-201-61633-5, Addison Wesley Developers Press, February
   2000.

   CDRA: IBM - Character Data Representation Architecture - Reference and
   Registry, IBM SC09-2190-00, December 1996.

   "Demystifying Character Sets", Andrea Vine, Multilingual Computing &
   Technology, #26 Vol. 10 Issue 4, August/September 1999; ISSN 1523-0309;
   Multilingual Computing Inc. Sandpoint ID, USA.

   Codes, Ciphers, and Other Cryptic and Clandestine Communication Fred B.
   Wrixon, ISBN 1-57912-040-7, Black Dog & Leventhal Publishers, 1998.

   <http://www.bobbemer.com/P-BIT.HTM> IBM - EBCDIC and the P-bit; The
   biggest Computer Goof Ever Robert Bemer.

HISTORY

   15 April 2001: added UTF-8 and UTF-EBCDIC to main table, pvhp.

AUTHOR

   Peter Prymmer pvhp@best.com wrote this in 1999 and 2000 with CCSID 0819
   and 0037 help from Chris Leach and Andr Pirard A.Pirard@ulg.ac.be as
   well as POSIX-BC help from Thomas Dorner Thomas.Dorner@start.de.
   Thanks also to Vickie Cooper, Philip Newton, William Raffloer, and Joe
   Smith.  Trademarks, registered trademarks, service marks and registered
   service marks used in this document are the property of their
   respective owners.

   Now maintained by Perl5 Porters.





Opportunity


Personal Opportunity - Free software gives you access to billions of dollars of software at no cost. Use this software for your business, personal use or to develop a profitable skill. Access to source code provides access to a level of capabilities/information that companies protect though copyrights. Open source is a core component of the Internet and it is available to you. Leverage the billions of dollars in resources and capabilities to build a career, establish a business or change the world. The potential is endless for those who understand the opportunity.

Business Opportunity - Goldman Sachs, IBM and countless large corporations are leveraging open source to reduce costs, develop products and increase their bottom lines. Learn what these companies know about open source and how open source can give you the advantage.





Free Software


Free Software provides computer programs and capabilities at no cost but more importantly, it provides the freedom to run, edit, contribute to, and share the software. The importance of free software is a matter of access, not price. Software at no cost is a benefit but ownership rights to the software and source code is far more significant.


Free Office Software - The Libre Office suite provides top desktop productivity tools for free. This includes, a word processor, spreadsheet, presentation engine, drawing and flowcharting, database and math applications. Libre Office is available for Linux or Windows.





Free Books


The Free Books Library is a collection of thousands of the most popular public domain books in an online readable format. The collection includes great classical literature and more recent works where the U.S. copyright has expired. These books are yours to read and use without restrictions.


Source Code - Want to change a program or know how it works? Open Source provides the source code for its programs so that anyone can use, modify or learn how to write those programs themselves. Visit the GNU source code repositories to download the source.





Education


Study at Harvard, Stanford or MIT - Open edX provides free online courses from Harvard, MIT, Columbia, UC Berkeley and other top Universities. Hundreds of courses for almost all major subjects and course levels. Open edx also offers some paid courses and selected certifications.


Linux Manual Pages - A man or manual page is a form of software documentation found on Linux/Unix operating systems. Topics covered include computer programs (including library and system calls), formal standards and conventions, and even abstract concepts.